Оптимизация раскроя листового материала на прямоугольники различных размеров. Линейный раскрой в Excel Работает по Вашим настройкам

В нашем прайсе представлены три продукта, связанных общей темой сортировки и оптимизации:

  • Программа линейного раскроя профиля и длинномерных материалов
  • Программа двумерного раскроя стекла, сэндвичей, ДСП и прочих листовых материалов
  • Программа оптимизации маршрута для решения логистических задач

Поставка модулей раскроя возможна как в составе комплексного решения Окнософт: Управление позаказным производством, так и в виде отдельных программ. При вызове раскройных программ из 1С, не требуется импорт – экспорт данных в промежуточные файлы. Пользователь работает в стандартном интерфейсе, а все тонкости взаимодействия 1С с внешними оптимизаторами выполняют обработки заполнения табличных частей. Для целей учета складских остатков, деловой обрези и материалов в производстве, используются стандартные документы и регистры типовых конфигураций 1С.

Линейный раскрой (профиль, труба, бревно)

Обеспечивает подтвержденный инвентаризациями процент обрези <1%. Ряд клиентов приобрели наши алгоритмы для замены программ оптимизации, поставлявшихся производителями отрезных станков. В программе использован алгоритм плотной укладки и генетический алгоритм поиска решения. На вход поступают данные о количестве и размерах изделий и деловых отходов. На выходе формируются карты раскроя с указанием тележек и ячеек. При необходимости, формируются файлы для обрабатывающих центров, станков с ЧПУ и этикетки с подробной информацией об отрезаемой заготовке и примыкающих элементах.

Живое демо на сайте

Пример ниже - не статическая картинка, а работоспособное веб - приложение.
Вы можете запустить раскрой профиля кнопкой Старт , задать свои размеры изделий и заготовок, изменить настройки оптимизации и оценить решение.
Конечно, оптимизатор в браузере работает медленнее, чем нативная программа, но позволяет бесплатно получить пригодные для работы результаты без необходимости что либо скачивать и устанавливать на компьютер.

20000 р.

Раскрой стекла и листовых материалов

Формирует карты раскроя высочайшего качества. Обеспечивает процент экономии материала, близкий к теоретическому пределу. На 10-12% превосходит популярные программы Opty-Way, MaxCut, PerfectCut, Cutting и др. по таким показателям, как площадь неделовых остатков, общая площадь раскраиваемого материала и количество использованных целых листов

Все алгоритмы двумерного раскроя разработаны в ООО «Программы раскроя», г. Новосибирск, разработчик: Шиляев Владимир Генрихович. "Окнософт" является официальным дилером разработчика и по сублицензионному договору имеет право, как продавать программу в виде отдельного продукта, так и использовать в составе наших разработок

40000 р.

Зачем оптимизировать раскрой в программе?

Многие заказчики говорят: "У меня работает хороший напиловщик. Он прекрасно кроит стекло и профиль в голове. В мусор попадают только треугольники."
Чаще всего, это правда. Вместе с тем, одной из задач руководителя, является организация предсказуемого процесса, стабильность которого не зависит от гениальности исполнителей. Программная оптимизация распила на основании плана производства - одна из мер, приближающая к этой цели.

Если предположить, что человек может перебрать в голове комбинаций больше, чем компьютер за тот же отрезок времени, получаемый при автоматическом раскрое коэффициент обрези ~1%, выгладит привлекательнее, чем неконтролируемый и неуправляемый 1%, который может обеспечить Гений. Перекладвыание задач оптимизации на программу, может высвободить дополнительное время (1-2 часа в день), которые он потратит с пользой для бизнеса.

На самом деле, ситуация с обрезью на большинстве предприятий хуже. В спецификации закладывают коэффициенты порядка 4-7% и если цех отработает с обрезью 3-5%, это считается хорошим результатом. Снижение реального коэффициента обрези на 3-5% - это 30-50 тысяч рублей, сэкономленных на каждом миллионе, потраченном на материалы. А еще, это даст возможность не закладывать в плановую себестоимость лишние рубли и предложить покупателю более выгодные цены.

Задача оптимального расходования материалов состоит из нескольких частей

Складской учет мерных материалов

В зависимости от особенностей бизнеса, клиенты используют несколько схем учета материалов:

  • На основании плана производства формируются требования - накладные с указанием продукции. Выдача дополнительных материалов (не хватило) отражается отдельными документами. Указание продукции в этих документах - желательно, но не является необходимым условием. В этом случае, в цех выдаются только те материалы, которые есть в спецификациях выпускаемой сегодня продукции и только в нужном количестве. Недостатком данного подхода можно назвать необходимость оформлять больше документов и отсутствие запаса материалов на участках (может, это достоинство?)
  • Требования - накладные формируются асинхронно, без привязки к плану производства на основании заявок мастеров. Такой подход позволяет получить "живой склад" при минимальных операторских затратах кладовщика, но не защищает от перерасхода материалов. Вся ответственность за соответствие расхода спецификациям, лежит в этом случае на мастерах и рабочих. План-фактный анализ себестоимости, покажет отклонения, но может оказаться поздно

Учет деловой обрези

Возможен в сценарии, при которм требования - накладные формируются на основании плана производства. Остатки деловой обрези на начало раскроя берутся из специального регистра и могут быть скорректированы оператором в соответствии с реальными остатками. При проведении задания на производство, данные о количестве материалов, которое необходимо получить со склада, помещаются в требования - накладные, а данные об образовавшейся деловой обрези складываются обратно в регистр.

Взаимодействие исполнителей

Принимая решение об использовании оптимизатора раскроя, необходимо учесть:

  • При автоматическом раскрое невозможно организовать сварку (сборку) изделий "из - под пилы", так как отрезки, относящиеся к одному изделию будут "разбросаны" по всей карте оптимизации
  • Удлинняется цикл производства, требуется организовать пул для хранения заготовок. Компромиссом является раскрой партиями по 30 - 50 изделий. При этом достигаются высокие показатели обрези и получается равномерная загрузка участков сварки и фурнитуры
  • Снижается оперативность, с которой цех может отреагировать на изменения плана. Если менеджеру нужно вклинить в сегодняшний план новое изделие, это ухудшит результаты оптимизации

Сергей Бабичев,
системный аналитик
ЗАО «Топ Системы», менеджер по продукту T-FLEX Раскрой

Оптимальный раскрой заготовок является довольно сложной производственной задачей. Здесь на помощь приходят специализированные программные решения. В комплексе T­FLEX PLM эту задачу решает программа T­FLEX Раскрой, позволяющая на основе конструкторских данных получать схемы раскроя деталей на заготовках. Как и многие компоненты комплекса, Т­FLEX Раскрой ориентирован на решение узкоспециализированной задачи, а именно: оптимизации раскроя (рис. 1). Другие сопутствующие задачи - подготовка геометрии деталей и заготовок, оформление документации на основе схем раскроя, подготовка управляющих программ (УП) для станков с ЧПУ - решаются в соответствующих программах комплекса T­FLEX PLM.

Применение специализированных программных продуктов, интегрированных между собой, выгодно для клиентов и партнеров компании «Топ Системы» , поскольку позволяет им на определенном этапе развития бизнеса использовать именно те инструменты T­FLEX, которые подходят для этого наилучшим образом. В то же время при масштабировании бизнеса или переходе на следующие этапы автоматизации это дает возможность «безболезненно» включать в имеющуюся инфраструктуру новые компоненты T­FLEX PLM без приостановки работ и дополнительных затрат на интеграцию программ. Именно поэтому T­FLEX Раскрой развивается как простое эффективное решение без дублирующей функциональности других компонентов T­FLEX PLM.

Принципы использования программы для раскроя

T­FLEX Раскрой тесно связан со средой проектирования T­FLEX CAD, которая берет на себя все непрофильные для программы раскроя функции: построение геометрии и оформление документации, взаимодействие с внешними CAD­системами и другими компонентами комплекса T­FLEX PLM (рис. 2).

В общем случае взаимодействие двух программ выглядит следующим образом:

T­FLEX CAD:

  1. Сложная геометрия контуров деталей и заготовок создается или импортируется из других программ при помощи T­FLEX CAD (прямоугольные детали и заготовки можно задать непосредственно в T­FLEX Раскрое).
  2. Из T­FLEX CAD запускается программа для раскроя.
    T­FLEX Раскрой:
  3. Создается проект одного из следующих типов: фигурный (для деталей и заготовок произвольной формы), гильотинный (для раскроя заготовок прямоугольной формы сквозными резами), линейный (для заготовок в хлыстах).
  4. Задаются параметры проекта раскроя и добавляется недостающая информация о деталях и заготовках: наименования, обозначения, количество, возможность поворота или переворота деталей и т.д.
  5. Производится расчет и анализируются результаты. Создаются отчеты. Схема раскроя передается обратно в T­FLEX CAD.
    T­FLEX CAD:
  6. Оформляется необходимая документация (карты раскроя, спецификации, экспликации).
  7. Производится формирование УП в модуле T­FLEX ЧПУ (модуль также интегрирован в среду T­FLEX CAD).
  8. При необходимости, результаты раскроя экспортируются во внешние программы.
  9. Основные возможности программы T­FLEX Раскрой были рассмотрены в работе , поэтому далее более подробно остановимся на самых интересных возможностях программы и ее взаимодействии с другими продуктами линейки T­FLEX.

Формирование данных для проекта раскроя

Существует множество способов добавить данные в проект раскроя:

  1. Ручное добавление деталей или заготовок непосредственно в интерфейсе T­FLEX Раскроя.
  2. При помощи команд импорта деталей и заготовок (рис. 3).
    При этом возможны два варианта использования:
    • импортировать контуры из документа T­FLEX CAD. Это удобно, когда есть чертежи деталей и на их основе созданы штриховки (контуры для раскроя), помещенные на специальный слой. В проект раскроя попадают все штриховки, принадлежащие заданному слою;
    • импортировать детали из других проектов раскроя. Это удобно, когда есть возможность заимствовать полностью или частично имеющиеся данные.
  3. Ручное добавление контуров деталей или заготовок из документа T­FLEX CAD (рис. 4).
  4. Копирование через буфер обмена данных о деталях из внешних таблиц, например из документов Microsoft Excel.
  5. Формирование данных для проекта раскроя на основе структуры изделия. Данный вариант применяется для автоматического формирования проекта раскроя для группы серийных изделий. Проиллюстрируем способ 5. Например, имеется параметрическая модель шкафа для трех типоразмеров (рис. 5).

Изделия серийные, поэтому регулярно появляются заказы на изготовление определенного количества изделий разных типоразмеров. И каждый раз стоит задача сформировать проект раскроя для конкретного заказа. В этом случае рекомендуется следующий подход. Для параметрической модели шкафа формируется специальная структура изделия, где указываются необходимые для раскроя данные: тип раскроя, наименования, обозначения, количество деталей в изделии и т.д. (рис. 6).

Структура изделия создается один раз для параметрической модели, а затем обновляется при пересчете для разных составов изделия. То есть структура изделия для своей модели всегда актуальна.

Чтобы сымитировать состав заказа (выбрать позиции и задать их количество), достаточно в T­FLEX CAD создать из прототипа новый документ и добавить в него модели изделий с нужными параметрами, задав через переменные количество экземпляров каждой позиции заказа. Автоматически сформируется структура для всего заказа. После этого в T­FLEX Раскрое достаточно создать проект на основе структуры изделия и запустить расчет (рис. 7).

Ассоциативность между исходной геометрией и контурами деталей в T­FLEX Раскрое

При добавлении контуров деталей из T­FLEX CAD в программу раскроя запоминается путь к исходному документу. Если в T­FLEX CAD контуры деталей изменились, то T­FLEX Раскрой отмечает записи с неактуальными контурами (рис. 8). Выделив нужное количество деталей, можно обновить их. Обновление контуров опциональное. Это дает возможность открыть старые («неактуальные») версии проектов раскроя и изготовить запчасти для устаревших изделий.

Также нередко бывает, что в T­FLEX CAD создается другая версия документа с контурами деталей и требуется переназначить путь к новому документу. В этом случае также выбираются все или несколько деталей и в параметрах изменяется путь.

Управление деловыми отходами

Деловые отходы (ДО) - это крупные остатки заготовок, которые впоследствии можно использовать для раскроя более мелких деталей. T­FLEX Раскрой позволяет установить для проекта приемлемый размер ДО, и на схеме раскроя будут отображаться (и учитываться в отчетах) остатки, размер которых превышает установленный предел. Такие остатки можно отобразить на схеме раскроя, а при необходимости нужным образом разделить отрезками на части, разрезая перемычки между деталями (рис. 9).

Для фигурного раскроя размеры ДО по площади могут быть большими, но совершенно не пригодными для последующего использования. В этом случае такие остатки можно удалить вручную (рис. 10).

Список деловых отходов формируется динамически, например, если пользователь изменил в параметрах проекта минимальный размер ДО или удалил остатки со схемы раскроя. Эта информация, наряду с другими результатами по деталям и заготовкам, отражается в отчетах (рис. 11). Отчеты можно выгружать во внешние файлы.

Формирование управляющих программ

Как было показано на рис. 1, схемы раскроя являются лишь промежуточным результатом. На основе схем раскроя создаются управляющие программы в модуле T­FLEX ЧПУ. Пример имитации обработки деталей на заготовке показан на рис. 12.

Использование T­FLEX Раскрой в едином информационном пространстве

Говоря о комплексном подходе к автоматизации КТПП, следует упомянуть, что T­FLEX Раскрой интегрирован с системой электронного документооборота T­FLEX DOCs, что позволяет наладить коллективную работу над проектами (рис. 13). Благодаря мощной платформе и гибкости инструментария построено решение, позволяющее из среды T­FLEX DOCs запускать T­FLEX Раскрой, производить расчет и регистрировать в системе результаты: файлы проектов раскроя, КИМ, схемы раскроя, деловые отходы. Полученные данные используются для реализации заказов.

В заключение отметим, что Т­FLEX Раскрой постоянно развивается: появляется новая функциональность и совершенствуется имеющаяся. Относительно молодая программа приобрела черты солидного взрослого решения, нацеленного на серьезные задачи.

Список литературы:

  1. Мальчук А.В. Практический опыт использования продуктов T­FLEX PLM на предприятиях малого и среднего бизнеса // САПР и графика. 2017. № 8.
  2. Бабичев С.В. T­FLEX Раскрой 15: новый продукт - большие перспективы // САПР и графика. 2016. № 6.

Цель работы : Закрепление знаний в области экономико-математического моделирования, знакомство с методикой решения задачи рационального раскроя материалов, основанной на решении оптимизационной задачи линейного программирования.

Исходные положения . Изготовление многих видов современной промышленной продукции начинается с раскроя материалов, что является одной из важных производственных задач для заготовительного производства и органов материально-технического снабжения.

Задачи оптимального раскроя материалов - одни из первых задач, к решению которых применялись методы линейного программирования. Они заключаются в определении наилучшего способа раскроя поступающего материала, при котором будет изготовлено наибольшее число готовых изделий в заданном ассортименте или будет получено наименьшее количество отходов.

Первая работа, посвященная решению задач, названных впоследствии задачами линейного программирования, появилась в 1939 г. Это была книга Л.В.Канторовича "Математические методы организации и планирования производства". Толчком для ее появления послужила задача, поставленная перед Институтом математики и механики Ленинградского Государственного университета лабораторией фанерного треста. В других отраслях промышленности также успешно применялись экономико-математические методы оптимизации раскроя материалов. Так, еще в 1948 - 1949 гг. математические методы раскроя были успешно применены на вагоностроительном заводе им. Егорова в Ленинграде, что позволило снизить в несколько раз отходы при раскрое различных материалов.

Математическая модель задачи.

Поступающие на предприятие материалы подлежат раскрою на заготовки. От правильности раскроя зависит себестоимость продукции (используется, например на автозаводах и в др.).

В большинстве случаев раскрой материалов на заготовки производится в определенной пропорции, обеспечивающей получение комплекта заготовок (т.е. кратно комплекту).

Задача оптимизации раскроя материалов заключается в разработке таких вариантов раскроя, при которых получают определенное количество заготовок в данном ассортименте (разных видов) с минимальными отходами.

Для составления математической модели задачи оптимального раскроя введем следующие обозначения:

L - длина материала; S - площадь поверхности листового или рулонного материала; N - количество единиц исходного материала.

Необходимо получить m различных видов заготовок либо длиной L i , либо площадью S i , где i - вид заготовки (i=1, 2, ..., m ).

Известно число заготовок i -го вида в изделии, т.е. то число заготовок, которое необходимо для производства одного изделия - b i . Число комплектов изделий, выпускаемых предприятием обозначим через k .


Раскрой материала можно произвести n способами. Известно а ij - число заготовок i -го вида, получаемое j -м способом (j =1, 2, …, n ).

Количество отходов, получаемое при раскрое единицы исходного материала j -м способом - С j .

Требуется составить такой план раскроя, чтобы обеспечить получение полных комплектов заготовок с минимальными отходами.

Обозначим через x j количество единиц исходного материала, раскроенных j -м способом. Найти такие x j ³ 0 , которые удовлетворяют следующим ограничениям:

(ограничение по количеству исходного материала)

(ограничение по плану производства)

Столько получается заготовок i-го вида при всех вариантах раскроя. Исходя из условия комплектности получим следующие ограничения по плану производства:

Суммарная величина отходов должна быть минимальной, тогда функция цели примет вид:

Пример расчетов в задаче оптимального раскроя материалов.

Из металлических прутков длиной по 6 м каждый, имеющихся в количестве 100 шт. необходимо изготовить конструкцию, изображенную на рис.1.

Источник: ПО МАТЕРИАЛАМ ООО "БАЗИС - ЦЕНТР"

Как следует из предыдущих разделов, понятие оптимальной карты раскроя является неоднозначным. Карта раскроя с высоким значением КИМ может быть абсолютно нетехнологична и наоборот. Однако всегда можно сформировать карты раскроя, удовлетворяющие максимальному количеству требований, актуальных для конкретного технологического процесса. Приведем ряд практических рекомендаций по методике выполнения раскроя.

При использовании плит определенного размера могут сформироваться карты раскроя, имеющие неудовлетворительное значение КИМ, или низкую технологичность. В том случае, если есть возможность закупать плиты других размеров, имеет смысл раскроить тот же список панелей, но при другом типоразмере плиты. Возможно, качество карт раскроя станет выше. Причем совсем необязательно, что на больших по площади плитах карты раскроя будут более качественными.

После выполнения раскроя обязательно надо проанализировать полученные карты. Во-первых, необходимо оценить размеры получившихся обрезков с точки зрения того, на какую величину размеры обрезков отличаются от ближайших по размеру панелей изделия. Может быть, есть возможность изменить размеры каких-нибудь деталей или всего изделия для получения более качественных карт раскроя.

Приведем простой пример. Пусть есть плита размером 2000х1000 мм. Ширина реза 0 мм. Необходимо раскроить 12 деталей размером 1001х501 мм. Очевидно, что на одну плиту помещается только одна панель, т.е для выполнения заказа необходимо 12 плит, а значение КИМ - около 25%. Но, если размеры панели уменьшить всего на 1 мм, то панелей с размерами 1000х500 мм на плите 2000х1000 мм разместится четыре штуки, а значение КИМ при этом будет равно 100%. При всей условности примера он наглядно иллюстрирует, как можно изменив размеры панелей на величину, которая, как правило, не критична для функциональности и эстетических показателей мебельных изделий, получить значительный выигрыш по всем основным показателям: стоимости, трудоемкости и времени изготовления изделия.

В том случае, когда размеры панелей изменить невозможно, можно попытаться варьировать толщиной облицовки. Рассмотрим пример. Панели в изделии облицованы материалом толщиной 0,5 мм со всех сторон, при этом облицовка нанесена с подрезанием контура панели. Это означает, что распиловочные размеры панелей уменьшаются на две толщины кромки по каждому измерению - длине и ширине, то есть на 1 мм. Формируем и анализируем карты раскроя. Допустим, они не устраивают по качеству. Возвращаемся к модели изделия в модулях БАЗИС-Мебельщик или БАЗИС-Шкаф и выполняем команду групповой замены облицовочного материала на новый толщиной 2,0 мм (или команду замену облицовочного материала на отдельных кромках панелей). В этом случае распиловочные размеры панели уменьшатся уже на 4 мм, но размеры готовой панели останутся прежними. Выполняем повторный раскрой и анализируем результаты. Вполне может оказаться, что значение КИМ возрастет очень резко, поскольку именно этих миллиметров и не хватало для получения качественного раскроя. Конечно, новый облицовочный материал стоит дороже, то есть при новом раскрое проигрываем в стоимости облицовочного материала, но экономим на стоимости ДСтП, что может «перекрыть» полученное удорожание. Получается парадоксальная ситуация: более дорогая мебель (за счет дорогой облицовки) оказывается в производстве более дешевой за счет экономии материала. Отметим, что все расчеты затрат на изделие выполняются автоматически и практически мгновенно в модуле БАЗИС-Смета.

Еще одно пояснение. В алгоритмах раскроя плитных материалов для мебельной промышленности заложена идеология раскроя гильотинными резами, то есть прямыми сквозными резами, разрезающими текущую полосу на две части. Одним из требований технологичности раскроя является точность размеров деталей с учетом допусков и посадок. Соответственно, алгоритмы формирования карт раскроя должны работать таким образом, чтобы получать панели с максимально точными размерами.

Рассмотрим фрагмент карты раскроя, приведенный на рис. 5.1.

Последнюю полосу, содержащую одиннадцать панелей с размерами 200х120 мм можно кроить разными способами. Допустим, что упоры устанавливаются с точностью ±0,5 мм, что является обычной точностью при распиловке панелей. Ширина реза - 5 мм. Выполняем раскрой. Вначале выполняем торцевание плиты, затем отрезаем полосу с этими панелями, то есть выполняем «горизонтальный» рез. После этого можно сделать рез на расстоянии 200*11+5*10 = 2250 мм для того, чтобы отпилить отход. Но этот размер может быть установлен на 0,5 мм меньше (точность установки упоров), то есть 2249,5 мм. Выполняем рез и устанавливаем размер по ширине на 120 мм, который реально из-за точности установки может оказаться равным 120-0,5=119,5 мм. Затем устанавливаем размер 200 мм, который реально может оказаться равным 200+0,5=200,5 мм. Отрезаем десять панелей, при этом размеры последней панели образуются автоматически. Измеряем ее длину и обнаруживаем, что она равна 194,5 мм, то есть на 5,5 мм меньше, чем нужно. Как это получилось, если все размеры были установлены с точностью 0,5 мм? Однако это легко доказать: 2249,5 - 200,5*10 - 5*10 = 194,5 мм. Реальный размер последней панели оказался равным 194,5х119,5 мм, а это уже неисправимый брак. Этот пример иллюстрирует, как влияет очередность раскроя на реальные размеры деталей.

Никогда не следует забывать о том, что технологический документ (в данном случае карта раскроя) - это инструкция для рабочего, заключающая в себе всю технологию изготовления и контрольные размеры, а не просто геометрический рисунок. На серьезном производстве рабочий не должен ничего складывать или прикидывать. Он должен точно следовать предписаниям в соответствии с документацией технологического процесса изготовления изделия.

Анализ оптимальности, технологичности и исполнимости карт раскроя

В данном разделе приведены примеры некоторых карт раскроя, полученных в различных программах, с анализом тех проблем и неудобств, которые могут возникнуть при их реализации на раскройном оборудовании. Это позволит читателю получить более полное представление о таких важных параметрах карт раскроя, как их технологичность и исполнимость. Ряд примеров карт раскроя и комментарии к ним с согласия автора взяты из статьи , часть - с профессионального мебельного форума htpp://mebelsoft.net.

Будем считать, что технологическая операция торцевания кромок плиты с двух сторон для обеспечения измерительной базы (кромки, от которой ведется отсчет) выполнена, поэтому она не рассматривается при описании последовательности действий по раскрою. Для упрощения анализа будем считать, что ширина реза равна нулю.

Проанализируем карту раскроя, показанную на рис. 5.2. С точки зрения КИМ данная карта вполне хорошая. Рассмотрим процесс ее исполнения на круглопильном станке: выполняем последовательно горизонтальный рез 1 и вертикальный рез 2.

Для раскроя оставшейся части листа единственными базами являются левая и верхняя кромки. Чтобы выполнить следующий рез, например, горизонтальный рез 3, необходимо сложить ширину полос (480+394+394 мм). Это означает, что на этом шаге ни один точный размер выставить невозможно - произошла потеря базы.

На первый взгляд кажется, что ничего страшного не произошло. Однако, где гарантия, что рабочий не ошибется и часть листа просто не уйдет в брак? Второй, более серьезный момент. Ни одна операция не может быть выполнена точно, поскольку в технике не существует размеров без допусков. Они обеспечиваются точностью станка, системой линеек и упоров, точностью измерительных приборов и т.д. На первом и втором шаге размер полосы выставлялся точно от базы, поэтому погрешность размеров минимальна. При отрезе полос на оставшейся части листа (горизонтальный рез 3) размер отрезаемой полосы будет выставлен с погрешностью 0,5 мм. Cоответственно, можно выставить размер 480+394+394=1268-0,5 мм=1267,5 мм.

Вертикальные резы 4, 5 и 6 выполняем с удовлетворительной точностью. Далее берем полосу 509х1267,5 мм и разрезаем ее горизонтальными резами. Для выполнения реза 7 при установке размера 480 мм с точностью 0,5 мм реально установили размер 480,5 мм, а при выполнении реза 8 при установке размера 394 мм с точностью 0,5 мм реально установили размер 394,5 мм.

Последняя деталь получилась с размером 392,5 мм, меньше номинала на 1,5 мм. Это для серьезного производства уже неисправимый брак, поскольку заданная точность исполнения 0,5 мм.

Для карты, показанной на рис. 5.3 даже для первого реза невозможно выставить точный размер. Первый рез (вертикальный рез 1) должен производиться на расстоянии 6*363 мм. Для дальнейшего раскроя установим размер 363 мм с точностью 0,5 мм, то есть первые пять полос будут отрезаться в размер 363,5 мм. Нетрудно подсчитать, что размер последней полосы будет равным 360 мм, а это уже неисправимый брак четырех деталей. Конечно, мы можем получить пять полос размером 362,5 мм, а последнюю полосу - размером 366 мм. Это уже исправимый брак, но для его исправления придется делать дополнительный рез.

Рассмотрим карту, приведенную на рис. 5.4. Как видно, укладка панелей на ней довольно плотная, но сама карта является неисполнимой, то есть выполнить раскрой в соответствии с ней просто невозможно. Рассмотрим возможную последовательность действий:

▼ выполнение вертикального реза 1 в размер 872 мм;
▼ выполнение горизонтального реза 2 в размер 868 мм;
▼ выполнение горизонтального реза 3 в размер 550+90 мм.

Дальше ни одного сквозного реза, например, горизонтальные резы 4, 6, или вертикальный рез 5, выполнить невозможно. Хорошо, если рабочий перед выполнением раскроя заметит это. В противном случае один или несколько листов материала уйдут в брак.

Карта, показанная на рис. 5.5, исполнима и имеет неплохое значение КИМ. Последовательность ее распила следующая: вертикальный рез 1, опиливание кромки, поворот, горизонтальный рез 2, опиливание кромки, поворот, вертикальный рез 3 и т.д. Другими словами, практически после каждого реза плиту придется поворачивать, а, значит, трудоемкость раскроя существенно возрастает.

Карту на рис. 5.6 на первый взгляд улучшить невозможно: и КИМ максимальный, и технологичность обеспечена. Рассмотрим последовательность распила. Вначале опиливаем правую сторону (вертикальный рез 1), а затем, развернув плиту на 90°, нарезаем полосы. Неудобство кроется в необходимости разворота практически целой плиты, поскольку, например, средний вес плиты ДСтП 2750х1830 мм толщиной 16 мм около 60 кг. Значительно легче было бы вначале нарезать полосы, а уж потом у каждой из них опилить кромку.

Рассмотрим последовательность распила карты, показанной на рис. 5.7. Выполняем вертикальный рез 1 в размер 2000 мм. Далее ее необходимо распилить на горизонтальные полосы, первая из которых имеет размер 1999х50 мм. Из-за наличия внутренних напряжений в плите, такую узкую и длинную полосу с большой вероятностью изогнет, и ее, возможно, придется списать в брак. Тоже самое может случиться и с крайней правой вертикальной полосой (вертикальный рез N) шириной 100 мм.

Карта раскроя, показанная на рис. 5.8, решает проблему возможного изгиба узкой полосы шириной 50 мм, расположив ее посередине листа. Такой эффект получен при помощи выбора метода сортировки, при котором узкие полосы располагаются внутри. Однако это существенно «ухудшило» технологичность остальных полос: попеременная установка упоров на уменьшение и увеличение размеров отрезаемых полос второго и выше уровней способствует понижению точности размеров. Это произошло в силу того, что выбранный метод сортировки действует на полосы всех уровней.

Решить эту проблему возможно включением опции Узкие полосы первого уровня располагаются внутри, который расположен на вкладке Критерии выбора в диалоге задания параметров раскроя. В этом случае, как видно из рис. 5.9, полоса шириной 50 мм по-прежнему располагается в середине плиты, но при этом в каждой получаемой полосе панели сортируются по установленному методу, например, от максимального размера к минимальному размеру.

Карту раскроя, показанную на рис. 5.10, вообще невозможно реализовать, поскольку в выделенном фрагменте отсутствуют прямые сквозные резы.

Таким образом, анализ карт раскроя, полученных автоматизированным способом в различных программах раскроя, показывает, что отсутствие учета технологических факторов оптимизации в лучшем случае приводит к получению трудоемких в реализации карт раскроя, а в худшем случае - к неисправимому браку. Традиционные алгоритмы оптимизации раскроя по максимальному значению КИМ по этим причинам далеко не всегда обеспечивают его.

Уменьшение трудоемкости раскроя

Задача уменьшения трудоемкости операции раскроя является актуальной для любого мебельного предприятия. Рассмотрим возможные варианты ее решения. Будем считать, что на предприятии используются пильные центры, на которых можно выполнять пакетный раскрой, и обычные круглопильные станки. Информацию для построения наименее трудоемкой стратегии раскроя будем получать из выдаваемой модулем БАЗИС-Раскрой статистической информации.

Допустим, выполнен раскрой некоторого задания, содержащего примерно пятьдесят типоразмеров панелей общим количеством не менее 150 штук, а количество панелей порядка 3000 штук. Вариант фрагмента статистических данных, формируемых модулем БАЗИС-Раскрой, приведен в табл. 5.1.

Качественные показатели выполненного раскроя достаточно хорошие. Поскольку используемое оборудование позволяет одновременно раскраивать до шести плит в пакете, в таблице приведены характеристики всех возможных вариантов пакетного раскроя. Рассмотрим их.

Общее количество используемых плит - 162 штуки. Если выполнять раскрой только на круглопильном станке по одной плите за цикл, то количество циклов будет равно количеству плит - 162 цикла.

При выполнении раскроя по две плиты в пакете количество циклов будет равно 84. При переходе к раскрою по три плиты, количество циклов уменьшается незначительно, до 83. Другие характеристики тоже улучшаются, но незначительно. Зато при переходе к раскрою по четыре плиты все значения резко улучшаются, почти в два раза. Например, количество циклов равно уже 45.

Дальнейшее увеличение количества плит в пакете совершенно не изменяет характеристики раскроя. На первый взгляд это не логично. Тем не менее, объяснение достаточно простое: в данном варианте набор панелей таков, что для его раскроя невозможно сформировать пакеты по пять плит. Оптимальным вариантом будет раскрой по четыре плиты в пакете.

Такое резкое улучшение характеристик пакетного раскроя происходит далеко не всегда. Рассмотрим еще один пример, информация по которому приведена в табл. 5.2. Резкое уменьшение количества циклов произошло только при переходе к пакетному раскрою, а в дальнейшем оно носит плавный характер.

Поясним, как рассчитывается количество циклов. Пусть надо раскроить по некоторой карте раскроя 12 плит. При четырех плитах в пакете необходимо три цикла (12:4=3), а при пяти плитах -два пакета по пять плит и один пакет из двух плит, то есть те же самые три цикла.

От количества циклов зависит общая длина резов, а от нее - износ пилы. Пиление тупым инструментом увеличивает потребление электроэнергии, ухудшает качества продукции и может служить причиной поломки пил. Вернемся к первому примеру. При раскрое по одной плите длина резов равна 4654,266 м, а при раскрое по четыре плиты она меньше - 1302,112 м. С другой стороны общая толщина «прорезаемой» плиты в первом случае меньше (одна плита), а во втором - больше (четыре плиты). Следовательно, износ пилы будет практически одинаковым.

Однако это не совсем так. Известно, что износ режущего инструмента зависит от множества факторов: скорости подачи, технического состояния станка и т.д., в том числе, от количества ударов зубьев о поверхность материала и количества распиленного материала. При прочих равных условиях на удар приходится примерно одна треть износа, а собственно на пиление - примерно две трети. Легко догадаться, что количество ударов при раскрое по одной плите будет значительно большим, что приведет к большему износу пилы. Вывод: раскрой предпочтительнее вести пакетами с максимально возможным количеством плит. Это не только экономит время и уменьшает трудоемкость, но и продлевает срок службы режущего инструмента.

Практика штабелирования панелей

Как отмечалось выше, решение задачи оптимального раскроя материалов имеет не только экономические и технологические, но и организационные аспекты, позволяющие повысить производительность работы, как самого раскройного участка, так и многих связанных с ним участков. Проанализируем карты раскроя некоторого заказа, показанные на рис. 5.11 и рис. 5.12.

Общая информация по раскрою (в модуле БАЗИС-Раскрой она выводится перед первой картой) приведена в табл. 5.3.

С точки зрения значения КИМ и технологичности их можно считать оптимальными. Рассмотрим последовательность выполнения раскроя. Карты условно будем нумеровать слева направо и сверху вниз вначале на рис. 5.11 с продолжением на рис. 5.12. Аналогичным образом нумеруем карты на рис. 5.13 с продолжением на рис. 5.14.

После распила первой карты на участке образуются штабели из 40 панелей 800х350 мм (позиция 3), 48 панелей размером 600х290 мм (позиция 1) и 192 панелей размером 500х146 мм (позиция 2). Последние панели можно отправлять на дальнейшую обработку, поскольку они выпилены в полном объеме. Остальные панели остаются на участке. После распила второй карты штабель панелей 800х350 мм (позиция 3) увеличивается еще на 30 панелей, но он попрежнему остается на участке. Только выполнив распил четвертой карты, можно передать панели 800х350 мм (позиция 3) на последующую обработку, но панели 600х290 мм (позиция 1) остаются на участке. Кроме того, появляется штабель панелей 480х352 мм (позиция 4) в количестве 20 штук. Только после распила третьей карты на участке остается единственный штабель панелей 480х352 мм (позиция 4). Таким образом, на раскройном участке во время выполнения заказа постоянно находится значительное количество штабелей панелей разных типоразмеров, которые ждут отправки на дальнейшую обработку. И это, как показывает практика, далеко не самый крупный заказ. Подобная ситуация чревата как минимум двумя отрицательными последствиями:

▼ при близких значениях размеров панелей в разных штабелях велика вероятность субъективной ошибки рабочего, который может просто перепутать панели и положить не в тот штабель;
▼ простой других участков предприятия (облицовочный, фрезерно-присадочный и т.д.) в ожидании панелей.

Выполним раскрой того же задания при неизменных настройках критериев и параметров, но с учетом технологии оптимального штабелирования. Для этого в диалоге настройки параметрах раскроя на вкладке Критерии выбора установим режим штабелирования по площади. Результат показан на рис. 5.13 и 5.14, а общая информация по результатам нового раскроя приведена в табл. 5.4.

Проанализируем результаты раскроя. Значение КИМ уменьшилось на 5,48%, но КИМ с учетом обрезков практически не изменился. Увеличились количество и площадь обрезков, а также количество карт раскроя - на две штуки. Для распила заказа потребовалась одна дополнительная плита материала. Количество и общая длина резов практически не изменились.

В качестве положительного момента отметим двукратное уменьшение количества установок размеров. Рассмотрим последовательность распила листов. После распила первой карты на участке формируется единственный штабель панелей 800х350 мм (позиция 3), который после распила четвертой карты может быть отправлен на следующие этапы обработки. Вместо него образуется штабель панелей 600х290 мм (позиция 1). Последовательно распиливаем шестую и вторую карты, после чего отправляем эти панели дальше. На участке по+прежнему один штабель панелей - теперь размером 480х352 мм (позиция 4). После распиливания седьмой карты они также отправляются на последующие этапы обработки. Последняя (третья) карта содержит только панели 500х146 мм (позиция 2). Таким образом, в любой момент времени на раскройном участке находится не более двух штабелей разных по размеру панелей, один из которых уже полностью подготовлен к передаче на другие участки.

Как видим, оба варианта раскроя имеют и свои достоинства, и свои недостатки. Выбор, как всегда, определяется конкретной производственной ситуацией. Главное в том, что технология оптимального штабелирования дает специалистам мебельного производства дополнительные возможности для организации равномерной загрузки оборудования всех технологических участков. Применять ее или нет - зависит от многих факторов, основной из которых - умение проанализировать и оценить все издержки, возникающие при реализации того или иного заказа.

Экономичный линейный раскрой материалов (раскрой погонажа) актуален для многих отраслей производства и в строительстве. Это — распил бревен и досок в деревообработке, резка прутков, арматурных стержней, уголков, швеллеров, труб, двутавров на заготовки...

В производстве металлоконструкций и машиностроении, поперечный раскрой рулонов с бумагой и тканью в целлюлозной и легкой промышленности.

Не смотря на кажущуюся простоту, решение задач линейного раскроя является весьма не легким, но стоящим делом. Внедрение научного подхода к раскрою погонажных материалов позволяет снизить расходы на них иногда более чем на 10%! Дочитайте статью до конца и убедитесь в правоте этих слов.

Рассматриваемая тема относится к задачам линейного программирования. Для решения таких задач ученые в последние 70 лет придумали несколько различных методов.

Метод индексов Л.В. Канторовича и В.А. Залгаллера при определенном навыке позволяет «вручную» без использования вычислительной техники эффектно выполнять линейный раскрой. Любопытным читателям рекомендую с этим методом ознакомиться, прочитав книгу вышеназванных авторов «Рациональный раскрой промышленных материалов».

Симплекс-метод, основанный на идеях Л.В. Канторовича, был описан и детально разработан рядом ученых из США в середине 20 века. Надстройка MS Excel «Поиск решения» (Solver) использует этот алгоритм. Именно с помощью этого метода и Excel мы будем в этой статье решать задачу линейного раскроя.

Позже появились и получили развитие генетический, жадный и муравьиный алгоритмы. Однако, ограничимся их перечислением и перейдем к делу, не забираясь в дебри теорий (хотя там, «в дебрях», очень интересно).

Включим Excel и на простом примере порезки металлических стержней на детали познакомимся с одним из способов решения практических задач линейного раскроя. Часто математики эту задачу называют «задачей о распиле».

Исходные данные для примера я не стал придумывать, а взял из статьи Покровского М.А. «Минимизация неизбежных потерь материалов в промышленном производстве при их раскрое на штучные заготовки» опубликованной в №5 (май 2015) электронного научно-технического журнала «Инженерный вестник» издаваемого ФГБОУ ВПО «МГТУ им. Н.Э. Баумана» (ссылка: engbul . bmstu . ru / doc /775784. html ).

Цель, которую я преследовал – сравнить полученные результаты решения задачи.

Пример решения задачи линейного раскроя в MS Excel.

Договоримся, что:

1. Заготовки – это исходный материал в виде прутков, полос, стержней и т.д. одинаковой длины.

2. Детали – это элементы, которые необходимо получить, разрезав исходные заготовки на части.

3. Ширина пила, реза, руба принята равной нулю.

Условие задачи:

Для комплектации одного из заказов заготовительный участок должен порубить на комбинированных ножницах из одинаковых прутков-заготовок длиной 1500 мм три типоразмера деталей:

151 штуку длиной 330 мм

206 штук длиной 270 мм

163 штуки длиной 190 мм

Требуется найти оптимальный план раскроя, использующий минимальное количество материала и дающий, соответственно, минимальное количество отходов.

Исходные данные:

1. Длину исходных заготовок L з в миллиметрах записываем в объединенную ячейку

D3E3F3: 1500

2. Присваиваем номера i всем типоразмерам деталей, начиная от самой длинной и заканчивая самой короткой в ячейках

D4; E4; F4: 1; 2; 3

3. Длины деталей L д i в миллиметрах пишем в

D5; E5; F5: 330; 270; 190

4. Количество деталей N д i в штуках заносим в

D6; E6; F6: 151; 206; 163

5. Приступаем к очень важному этапу – заполнению вариантов раскроев.

Необходимо запомнить и понять 2 принципа выполнения этой работы .

1. Длины отходов должны быть меньше самой маленькой детали (0< Lo j < L д min ).

2. «Укладку» деталей в заготовку начинаем с самых больших деталей и с самого большого их количества, последовательно двигаясь в сторону уменьшения.

Если какого-нибудь типоразмера деталей в варианте раскроя нет, то ячейку оставляем пустой, ноль писать не будем для облегчения визуального восприятия таблицы.

Вариант раскроя №1:

Попытка выкроить из одной заготовки 5 деталей №1 невозможна, поэтому пишем в ячейку

Добавить в раскрой деталь №2 или деталь №3 также невозможно, поэтому оставляем пустыми ячейки

Вариант раскроя №2:

Уменьшаем на 1 от предыдущего варианта количество деталей №1 и записываем в

Пробуем добавить 2 детали №2 – не получается, поэтому дополняем в

Остается возможность дополнить раскрой деталью №3. Заносим в

Придерживаясь озвученных принципов, заполняем по аналогии все возможные в данном случае 18 вариантов раскроев.

Сделав пару-тройку таблиц вариантов раскроев самостоятельно, вы уясните логику действий и будете тратить считанные минуты на эту работу.

Если при раскрое не выполняется первый принцип, то ячейка с длиной отхода автоматически окрашивается в красный цвет. Условное форматирование, примененное к ячейкам G7…G24, наглядно поможет вам в этой работе.

В ячейках H7…H24 ничего не пишем! Они используются для вывода результата решения!

Подготовка к решению:

* В ячейках G7…G24 вычисляются длины отходов (обрезков), остающиеся в результате выполнения раскроев, по формуле

Lo j = L з — Σ (L д i * N д ij )

6. Количество деталей каждого типоразмера, изготовленных по всем примененным вариантам раскроя, будут подсчитываться в ячейках D26, E26 и F26 по формуле

N д i расч = Σ (N д ij * N з j )

Количество деталей в найденном в конце решения плане раскроя должно полностью соответствовать заданному количеству деталей!

7. Необходимое число заготовок для выполнения оптимального плана раскроя будет определяться в объединенной ячейке D27E27F27 по формуле

N з расч = ΣNз j

8. Общая длина всех заготовок, необходимых чтобы выполнить линейный раскрой всех деталей будет подсчитываться в объединенной ячейке D28E28F28 по формуле

L з Σ = L з * N з расч

9. Общая длина всех отходов, получаемых при выполнении найденного плана раскроя, будет считаться в объединенной ячейке D29E29F29 по формуле

L о Σ = Σ (L о j * N з j )

10. Доля отходов, полученных при выполнении оптимального плана линейного раскроя от общего количества использованного материала, будет вычисляться в объединенной ячейке D30E30F30 по формуле

Ωo = Lо Σ /Lз Σ

Решение:

Подготовка завершена, определены 18 вариантов наиболее оптимальных раскроев одной заготовки на детали и вписаны все необходимые формулы. Теперь предстоит решить главную задачу: определить оптимальный план раскроя – сколько заготовок, и по каким вариантам раскроев резать , чтобы в итоге получить все необходимые детали в нужном количестве при минимуме отходов.

1. Выбираем в главном меню «Сервис» - «Поиск решения…».

2. В появившемся одноименном окне «Поиск решения» производим настройки.

2.1. Назначаем целевой функцией общую длину отходов Lо Σ и вводим ссылку в окно целевой ячейки.

2.2. Устанавливаем переключатель «Равной:» в положение «минимальному значению».

2.3. Указываем ячейки с переменными Nз j в окне «Изменяя ячейки».

2.4. Вводим ограничения в одноименное окно. В качестве условий указываем необходимость равенства заданного Nд i и расчетного Nд iрасч количества деталей, а так же на переменные Nз j – расчетное количество заготовок по вариантам раскроев – накладываем ограничение: это должны быть целые числа.

3. Нажимаем кнопку «Параметры» и в выпавшем окне «Параметры поиска решения» выполняем настройки так, как показано на следующем скриншоте. Закрываем окно кнопкой «ОК».

4. В окне «Поиск решения» нажимаем кнопку «Выполнить» и ждем, пока Excel найдет решение. Это может длиться несколько минут.

5. После сохранения найденного решения кнопкой «ОК», результаты отобразятся в ячейках H7...H24 на листе Excel.

На следующей картинке показан найденный оптимальный линейный раскройный план.

Что в итоге?

Линейный раскрой в Excel заготовок для задач подобных рассмотренной в этой статье выполняется описанным выше методом за 10-15 минут! «Вручную», не зная метод индексов Канторовича, за такое время решения не найдешь.

Запустив «Поиск решения» несколько раз при разных параметрах поиска, удалось найти 5 различных планов рубки заготовок. Все 5 планов требуют одинаковое число заготовок – 93 и дают отходов всего 2,21%!!! Эти планы почти на 6% лучше, чем план, рассчитанный Покровским и более чем на 10% экономичнее «Традиционного» плана (смотри ссылку на первоисточник в первой части статьи). Очень достойный результат достигнут быстро и без применения дорогостоящих программ.

Следует заметить, что надстройка Excel Solver («Поиск решения»), использующая симплекс-метод при решении задач линейного программирования, может работать не более чем с 200 переменными. В приложении к рассмотренной нами задаче линейного раскроя это означает, что количество раскроев не может превышать 200 вариантов. Для простых задач этого достаточно. Для более сложных задач следует попробовать применить «смесь» «жадного» алгоритма и симплексного метода Solver, отобрав из полного списка раскроев не более 200 самых экономичных. Далее запасаемся терпением и добиваемся результатов. Можно попытаться разбить сложную задачу на несколько простых, но «уровень оптимальности» найденного решения будет при этом, скорее всего, ниже.

Может быть, рассмотренный вариант решения вопросов линейного раскроя и не «высший пилотаж», но однозначно шаг вперед по сравнению с «традиционным» подходом на многих производствах.

Использование надстройки MS Excel «Поиск решения» (Solver) было на блоге уже однажды рассмотрено в статье . Думаю, что этот замечательный инструмент достоин пристального внимания и еще не раз поможет изящно и быстро решить ряд новых нетривиальных задач.

P.S. Ссылки на лучшие из бесплатных программ линейного раскроя, найденных мной в Сети:

http://stroymaterial-buy.ru/raschet/70-raskroy-lineynih-izdeliy.html

http://forum-okna.ru/index.php?app=core&module=attach§ion=attach &attach_id=7508

http://forum.dwg.ru/attachment.php?attachmentid=114501&d=13823277 74

http://www.planetcalc.ru/917/

Программы по последним двум ссылкам реализуют жадные эвристики и выполняют линейный раскрой в задаче из статьи, используя аж целых 103 заготовки. Применение жадных алгоритмов оправдано в случаях необходимости снижения общего времени операции резки при слишком большом количестве вариантов раскроев в более оптимальных планах.

Ниже статьи в блоке «Отзывы» можете написать свои комментарии, уважаемые читатели.