Резонанс в электрических цепях применение. Резонансы в электрических цепях

Режим работы электрической цепи, при котором ток и напряжение на входе цепи совпадают по фазе, называют резонансом . При этом эквивалентное сопротивление всей цепи будет активным. В цепях, состоящих из резистивного, индуктивного и емкостного элементов, различают резонанс напряжений и резонанс токов.

Резонанс напряжений

Резонанс напряжений может иметь место в цепи с последовательно соединенными индуктивным и емкостным элементами. Рассмотрим схему последовательного соединения резистора, индуктивности и емкости (рис. 6.1).


U Х = U L – U C – положительна, и угол сдвига фаз между током и напряжением φ> активно-индуктивным .

2. Пусть индуктивное сопротивление меньше емкостного X L < X C . Тогда и индуктивное напряжение станет меньше емкостного U L < U C , так как ток через элементы протекает один и тот же, а напряжение пропорционально току и сопротивлению. Векторная диаграмма будет иметь вид (рис. 6.3).

Реактивная составляющая напряжения U Х = U L – U C – отрицательна, и угол сдвига фаз между током и напряжением φ < 0. Такой характер цепи является активно- емкостным .

3. Пусть X L = X C , в этом случае индуктивное и емкостное напряжения равны по величине U L = U C . Так как они всегда противоположны по фазе, то они полностью компенсируют друг друга, следовательно, реактивная составляющая U Х = U L – U C = 0. Общее напряжение будет активным и совпадет по фазе с током φ = 0, следовательно, в цепи имеет место резонанс напряжений. Векторная диаграмма для данного случая показана на рис. 6.4.

Из вышесказанного следует, что условием, при котором наступит резонанс напряжений, является равенство индуктивного и емкостного сопротивлений.

Из выражения (6.1) следует, что при резонансе полное сопротивление цепи имеет активный характер.

Резонанс напряжений можно достигнуть подбором трех параметров:

1) изменением частоты колебательного контура , L , C = const;

2) изменением индуктивности контура , , С = const;

3) изменением емкости колебательного контура , , L = const .

При этом все три параметра связаны между собой.

Из условия получаем: , отсюда:

Частоту ω 0 , определяемую из такого условия, называют резонансной.

Если напряжение на зажимах цепи и активное сопротивление цепи R не изменяются, то ток при резонансе имеет максимальное значение

, так как .

Если реактивные сопротивления превосходят при резонансе активное сопротивление:

, ,

то напряжения на зажимах катушки и конденсатора могут существенно превышать напряжение на входе цепи.

Превышение напряжения на реактивных элементах над напряжением на входе принято характеризовать величиной

,

называемой волновым или характеристическим сопротивлением цепи. Волновое сопротивление численно равно индуктивному или емкостному сопротивлению на резонансной частоте.

Кратность превышения напряжения на зажимах индуктивного и емкостного сопротивлений над входным определяют отношением напряжения на реактивном элементе к напряжению на входе цепи на резонансной частоте:

Эта величина называется добротностью контура.

Величина, обратная добротности

называется затуханием контура.



Избирательные свойства колебательного контура определяются его добротностью. Чем больше добротность контура, тем более узкой будет резонансная кривая (рис. 6.5).

Избирательность контура характеризуется полосой пропускания. Полоса пропускания – это диапазон частот, для которых ток ослабляется не более чем в раз по отношению к максимальному значению

.

Ширину полосы пропускания можно определить по формуле

Рассмотрим резонансные кривые тока и напряжений (рис. 6.6).

При неизменных параметрах цепи и неизменном входном напряжении ток определится выражением

.



Рассмотрим это выражение в реперных точках: ; . При нулевой частоте ток в цепи будет постоянным, величина тока , так как конденсатор не пропускает постоянный ток, при резонансной частоте ток максимален – это признак резонанса напряжений . На высоких частотах ток , так как сопротивление катушки становится равным .

Напряжение на индуктивности пропорционально частоте, следовательно, при нулевой частоте напряжение на индуктивности . При все напряжение, подаваемое от источника, приложено к индуктивности, и .

Напряжение на емкости обратно пропорционально частоте, следовательно, при все напряжение приложено к емкости . При , так как равно нулю емкостное сопротивление.

При резонансной частоте индуктивное и емкостное напряжения равны .

Напряжение на резистивном элементе пропорционально току и, следовательно, повторяет форму кривой тока при и , при .

Рассмотрим энергетические соотношения при резонансе.

Мгновенные значения мощности на зажимах катушки и конденсатора определяются выражениями:

;

.

Так как при резонансе , эти мощности в любой момент времени равны и противоположны по знаку. Это значит, что происходит обмен энергией между магнитным полем катушки и электрическим полем конденсатора, но не происходит обмена между источником и реактивными элементами, так как

и ,

то есть суммарная энергия электрического и магнитного полей остается постоянной. Энергия переходит из конденсатора в катушку в течение четверти периода, когда напряжение на конденсаторе убывает, а ток растет. В течение следующей четверти периода энергия переходит из катушки в конденсатор. Источник энергии питает только активное сопротивление.

Резонанс токов

Резонанс в идеальной цепи

Резонанс токов наступает при параллельном соединении индуктивности и емкости. Для обобщения анализов включим в цепь параллельно индуктивности и емкости активное сопротивление (рис. 6.7).


По первому закону Кирхгофа можно записать:

.

Запишем это выражение в комплексной форме:

,

где , , .

Вынесем напряжение за скобку, получим

.

Условием резонанса токов является равенство индуктивной и емкостной проводимостей:

.

Векторная диаграмма для режима резонанса представлена на рис. 6.8. При равенстве индуктивной и емкостной проводимостей будут равны и токи . Направленные в противофазе, эти токи компенсируют друг друга, в цепи остается только активная составляющая тока, и общий ток будет совпадать по фазе с напряжением . Поэтому резонанс называют резонансом токов.

Общий ток в цепи можно представить как ,

где – полная комплексная проводимость, модуль которой равен

.

С учетом условия резонанса, получим, что , то есть проводимость цепи минимальна, следовательно, и ток будет минимальным – это признак резонанса токов.

Из условия резонанса получим выражение для резонансной частоты

То есть, как и при резонансе напряжений, добиться резонанса токов можно, изменяя один из трех параметров ω , L , C .

Резонанс в реальной цепи

Реальная катушка и реальный конденсатор обладают не только реактивным, но и активным сопротивлением. Катушка – сопротивлением обмотки, конденсатор – сопротивлением токам утечки. В этом случае при большой добротности катушки или конденсатора активное сопротивление может оказаться функцией частоты.

Под добротностью катушки будем понимать отношение её индуктивного сопротивления к активному.

Под добротностью конденсатора – отношение его емкостного сопротивления к активному

.

Рассмотрим цепь, содержащую реальные катушку и конденсатор, представленную на рис. 6.9.

Условием резонанса токов в такой цепи является равенство нулю реактивной проводимости .


Комплексную проводимость цепи можно выразить через комплексные сопротивления ветвей:

Резонансом называют режим, когда в цепи, содержащей индуктивности и емкости, ток совпадает по фазе с напряжением. Входные реактивные сопротивление и проводимость равны нулю: x = ImZ = 0 и B = ImY = 0. Цепь носит чисто активный характер: Z = R; сдвиг фаз отсутствует (φ=0).

Напряжения на индуктивности и емкости в этом режиме равны по величине и, находясь в противофазе, компенсируют друг друга. Все приложенное к цепи напряжение приходится на ее активное сопротивление (рис. 27.1, а).


Рис. 27.1 - Векторные диаграммы при резонансе напряжений(а) и токов(б)

Напряжения на индуктивности и емкости могут значительно превышать напряжения на входе цепи. Их отношение, называемое добротностью контура Q, определяется величинами индуктивного (или емкостного) и активного сопротивлений:

Добротность показывает, во сколько раз напряжения на индуктивности и емкости при резонансе превышают напряжение, приложенное к цепи. В радиотехнических цепях она может достигать нескольких сотен единиц.

Из условия выше следует, что резонанса можно достичь, изменяя любой из параметров – частоту, индуктивность, емкость. При этом меняются реактивное и полное сопротивления цепи, а вследствие этого – ток, напряжение на элементах и сдвиг фаз. Не приводя анализа формул, показываем графические зависимости некоторых из этих величин от емкости (рис. 27.2). Емкость С0, при которой наступает резонанс, можно определить из формулы: С0=1/(ω2L).


Рис. 27.2 - Зависимости параметров режима и емкости

Аналогичные рассуждения можно провести и для цепи, состоящей из параллельно соединенных R, L и C. Векторная диаграмма ее резонансного режима приведена на рис. 27.1, б. Рассмотрим теперь более сложную цепь с двумя параллельными ветвями, содержащими активные и реактивные сопротивления (рис. 27.3, а).


Рис. 27.3 - Разветвленная цепь (а) и ее эквивалентная схема (б)

Для нее условием резонанса является равенство нулю ее реактивной проводимости: ImY = 0. Это равенство означает, что мы должны мнимую часть комплексного выражения Y приравнять к нулю.

Определяем комплексную проводимость цепи. Она равна сумме комплексных проводимостей ветвей:


Приравнивая к нулю выражение, стоящее в круглых скобках, получаем:

Левая и правая части последнего выражения представляют собой не что иное, как реактивные проводимости первой и второй ветвей B1 и B2. Заменяя схему на рис. 27.3, а эквивалентной (рис. 27.3, б), параметры которой вычисляем по формулам, и используя условие резонанса (B = B1 – B2 = 0), снова приходим к конечному выражению.

Схеме на рис. 27.3, б соответствует векторная диаграмма, приведенная на рис. 27.4

Рис. 27.4 - Векторная диаграмма резонансного режима разветвленной цепи

Резонанс в разветвленной цепи называется резонансом токов. Реактивные составляющие токов параллельных ветвей противоположны по фазе, равны по величине и компенсируют друг друга, а сумма активных составляющих токов ветвей дает общий ток.

Резонанс является одним из самых распространенных в природе резонанса можно наблюдать в механических, электрических и даже тепловых системах. Без резонанса у нас не было бы радио, телевидения, музыки и даже качелей на детских площадках, не говоря уже об эффективнейших диагностических системах, применяемых в современной медицине. Одним из самых интересных и полезных видов резонанса в электрической цепи является резонанс напряжений.

Элементы резонансной цепи

Явление резонанса может возникнуть в так называемой RLC-цепи, содержащей следующие компоненты:

  • R - резисторы. Эти устройства, относящиеся к так называемым активным элементам электрической цепи, преобразуют электрическую энергию в тепловую. Другими словами, они удаляют энергию из контура и преобразуют ее в тепло.
  • L - индуктивность. Индуктивность в электрических цепях - аналог массы или инерции в механических системах. Этот компонент не очень заметен в электрической цепи, пока не попробуешь сделать в ней какие-либо изменения. В механике, например, таким изменением является изменение скорости. В электрической цепи - изменение тока. Если оно по какой-либо причине происходит, индуктивность противодействует такому изменению режима цепи.
  • С - обозначение для конденсаторов, которые представляют собой устройства, хранящие электрическую энергию подобно тому, как пружины сохраняют Индуктивность концентрирует и сохраняет магнитную энергию, в то время как конденсатор концентрирует заряд и тем самым хранит электрическую энергию.

Понятие резонансного контура

Ключевыми элементами резонансного контура являются индуктивность (L) и емкость (C). Резистор имеет тенденцию к гашению колебаний, поэтому он удаляет энергию из контура. При рассмотрении процессов, происходящих в колебательном контуре, мы его временно игнорируем, но необходимо помнить, что подобно силе трения в механических системах электрическое сопротивление в цепях невозможно устранить.

Резонанс напряжений и резонанс токов

В зависимости от способа соединения ключевых элементов резонансный контур может быть последовательным и параллельным. При подключении последовательного колебательного контура к источнику напряжения с частотой сигнала, совпадающей с собственной частотой, при определенных условиях в нем возникает резонанс напряжений. Резонанс в электрической цепи с параллельно соединенными реактивными элементами называется резонансом токов.

Собственная частота резонансного контура

Мы можем заставить систему колебаться с собственной частотой. Для этого сначала необходимо зарядить конденсатор, как показано на верхнем рисунке слева. Когда это будет выполнено, ключ переводится в положение, показанное на том же рисунке справа.

В момент времени "0" вся электрическая энергия сохраняется в конденсаторе, и ток в контуре равен нулю (рисунок внизу). Обратите внимание, что верхняя пластина конденсатора заряжена положительно, а нижняя - отрицательно. Мы не можем видеть колебания электронов в цепи, но мы можем измерить ток амперметром, а при помощи осциллоскопа отследить характер зависимости тока от времени. Отметим, что T на нашем графике - это время, необходимое для завершения одного колебания, носящего в электротехнике название "период колебания".

Ток течет по часовой стрелке (рисунок внизу). Энергия передается из конденсатора в На первый взгляд может показаться странным, что индуктивность содержит энергию, однако это похоже на кинетическую энергию, содержащуюся в движущейся массе.

Поток энергии возвращается обратно в конденсатор, но обратите внимание, что полярность конденсатора теперь изменилась. Другими словами, нижняя пластина теперь имеет положительный заряд, а верхняя пластина - отрицательный заряд (рисунок внизу).

Теперь система полностью обратилась, и энергия начинает поступать из конденсатора опять в индуктивность (рисунок внизу). В итоге энергия полностью возвращается к своей отправной точке и готова начать цикл заново.

Частота колебаний может быть аппроксимирована следующим образом:

  • F = 1/2π(LC) 0,5 ,

где: F - частота, L - индуктивность, C - емкость.

Рассмотренный на этом примере процесс отражает физическую суть резонанса напряжений.

Исследование резонанса напряжений

В реальных схемах LC всегда присутствует небольшое сопротивление, которое с каждым циклом уменьшает прирост амплитуды тока. После нескольких циклов ток уменьшается до нуля. Этот эффект называется "затухание синусоидального сигнала". Скорость затухания тока до нулевого значения зависит от величины сопротивления в цепи. Тем не менее, сопротивление не изменяет частоту колебаний резонансного контура. Если сопротивление достаточно велико, синусоидальные колебания в контуре не возникнут вообще.

Очевидно, там, где существует собственная частота колебаний, есть возможность возбуждения резонансного процесса. Мы делаем это, включая в последовательную цепь источник питания (АС), как показано на рисунке слева. Термин "переменный" означает, что выходное напряжение источника колеблется с определенной частотой. Если частота источника питания совпадает с собственной частотой контура, возникает резонанс напряжений.

Условия возникновения

Сейчас мы рассмотрим условия возникновения резонанса напряжений. Как показано на последнем рисунке, мы вернули резистор в контур. При отсутствии резистора в контуре ток в резонансной цепи будет нарастать до некоторого максимального значения, определяемого параметрами элементов контура и мощностью источника питания. Увеличение сопротивления резистора в резонансной цепи повышает тенденцию к затуханию тока в контуре, но не влияет на частоту резонансных колебаний. Как правило, режим резонанса напряжений не наступает, если сопротивление цепи резонанса удовлетворяет условию R = 2(L/C) 0,5 .

Использование резонанса напряжений для передачи радиосигнала

Явление резонанса напряжений является не только любопытнейшим физическим феноменом. Оно играет исключительную роль в технологии беспроводных коммуникаций - радио, телевидении, сотовой телефонии. Передатчики, используемые для беспроводной передачи информации, в обязательном порядке содержат схемы, предназначенные для резонирования на определенной для каждого устройства частоте, называемой несущей частотой. При помощи передающей антенны, подключенной к передатчику, он излучает на несущей частоте.

Антенна на другом конце приемо-передающего тракта получает этот сигнал и подает его на приемный контур, предназначенный для резонирования на частоте несущей. Очевидно, что антенна принимает множество сигналов на различных частотах, не говоря уже о фоновом шуме. Благодаря наличию на входе приемного устройства, настроенного на несущую частоту резонансного контура, приемник выбирает единственно правильную частоту, отсеивая все ненужные.

После детектирования амплитудно-модулированного (AM) радиосигнала, выделенный из него низкочастотный сигнал (НЧ) усиливается и подается на звуковоспроизводящее устройство. Это простейшая форма радиопередачи очень чувствительна к шумам и помехам.

Для повышения качества принимаемой информации разработаны и успешно используются другие, более совершенные способы передачи радиосигнала, которые также базируются на использовании настроенных резонансных систем.

Или FM-радио решает многие из проблем радиопередачи с амплитудно-модулированным передающим сигналом, однако это достигается ценой существенного усложнения системы передачи. В FM-радио системные звуки в электронном тракте превращаются в небольшие изменения несущей частоты. Часть оборудования, которое выполняет это преобразование, называется "модулятор" и используется с передатчиком.

Соответственно, к приемнику должен быть добавлен демодулятор для преобразования сигнала обратно в форму, которая может быть воспроизведена через громкоговоритель.

Другие примеры использования резонанса напряжения

Резонанс напряжений как основополагающий принцип заложен также в схемотехнике многочисленных фильтров, широко применяемых в электротехнике для устранения вредных и ненужных сигналов, сглаживания пульсаций и генерирования синусоидальных сигналов.

В колебательном контуре, обладающем индуктивностью L, емкостью C и сопротивлением R, свободные электрические колебания имеют тенденцию к затуханию. Чтобы колебания не затухали, необходимо периодически пополнять контур энергией, тогда возникнут вынужденные колебания, которые не будут затухать, ведь внешняя переменная ЭДС станет теперь поддерживать колебания в контуре.

Если колебания поддерживать источником внешней гармонической ЭДС, частота которой f очень близка к резонансной частоте колебательного контура F, то амплитуда электрических колебаний U в контуре станет резко возрастать, то есть наступит явление электрического резонанса .


Рассмотрим сначала поведение конденсатора C в цепи переменного тока. Если к генератору, напряжение U на выводах которого меняется по гармоническому закону, присоединить конденсатор C, то заряд q на обкладках конденсатора станет меняться также по гармоническому закону, как и ток I в цепи. Чем больше емкость конденсатора, и чем выше частота f, прикладываемой к нему гармонической ЭДС, тем больше окажется ток I.

С этим фактом связано представление о так называемом емкостном сопротивлении конденсатора XC, которое он вносит в цепь переменного тока, ограничивая ток подобно активному сопротивлению R, но в сравнении с активным сопротивлением, конденсатор не рассеивает энергию в виде тепла.

Если активное сопротивление рассеивает энергию, и таким образом ограничивает ток, то конденсатор ограничивает ток просто из-за того, что в нем не успевает уместиться больше заряда, чем генератор может дать за четверть периода, к тому же в следующую четверть периода конденсатор отдает энергию, которая накопилась в электрическом поле его диэлектрика, обратно генератору, то есть хоть ток и ограничен, энергия не рассеивается (потерями в проводах и в диэлектрике пренебрежем).


Теперь рассмотрим поведение индуктивности L в цепи переменного тока. Если вместо конденсатора присоединить к генератору катушку, обладающую индуктивностью L, то при подаче от генератора синусоидальной (гармонической) ЭДС на выводы катушки, - в ней начнет возникать ЭДС самоиндукции , поскольку при изменении тока через индуктивность, увеличивающееся магнитное поле катушки стремится препятствовать росту тока (закон Ленца), то есть получается, что катушка вносит в цепь переменного тока индуктивное сопротивление XL - дополнительное к сопротивлению провода R.

Чем больше индуктивность данной катушки, и чем выше частота F тока генератора, тем выше индуктивное сопротивление XL и меньше ток I, ведь ток просто не успевает устанавливаться, потому что ЭДС самоиндукции катушки ему мешает. И каждые четверть периода энергия, накопленная в магнитном поле катушки, возвращается к генератору (потерями в проводах пока пренебрежем).


В любом реальном колебательном контуре последовательно соединены индуктивность L, емкость C и активное сопротивление R.

Индуктивность и емкость действуют на ток противоположно в каждую четверть периода гармонической ЭДС источника: на обкладках конденсатора , хотя уменьшается ток, а при нарастании тока через индуктивность ток хоть и испытывает индуктивное сопротивление, но нарастает и поддерживается.

И во время разряда: разрядный ток конденсатора сначала большой, напряжение на его обкладках стремится установить большой ток, а индуктивность препятствует увеличению тока, и чем больше индуктивность, тем меньший разрядный ток будет иметь место. При этом активное сопротивление R вносит чисто активные потери. То есть полное сопротивление Z, последовательно включенных L, C и R, при частоте источника f, будет равно:

Из закона Ома для переменного тока очевидно, что амплитуда вынужденных колебаний пропорциональна амплитуде ЭДС и зависит от частоты. Полное сопротивление цепи будет наименьшим, а амплитуда тока будет наибольшей при условии, что индуктивное сопротивление и емкостное при данной частоте равны между собой, в этом случае наступит резонанс. Отсюда же выводится формула для резонансной частоты колебательного контура :

Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой последовательно, то резонанс в такой цепи называется последовательным резонансом или резонансом напряжений. Характерная черта резонанса напряжений - значительные напряжения на емкости и на индуктивности, по сравнению с ЭДС источника.

Причина появления такой картины очевидна. На активном сопротивлении по закону Ома будет напряжение Ur, на емкости Uc, на индуктивности Ul, и составив отношение Uc к Ur можно найти величину добротности Q. Напряжение на емкости будет в Q раз больше ЭДС источника, такое же напряжение окажется приложенным к индуктивности.

То есть резонанс напряжений приводит к возрастанию напряжения на реактивных элементах в Q раз, а резонансный ток будет ограничен ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, сопротивление последовательного контура на резонансной частоте минимально.

Явление резонанса напряжений используют в , например если необходимо устранить из передаваемого сигнала составляющую тока определенной частоты, то параллельно приемнику ставят цепочку из соединенных последовательно конденсатора и катушки индуктивности, чтобы ток резонансной частоты этой LC-цепочки замкнулся бы через нее, и не попал к бы приемнику.

Тогда токи частоты далекой от резонансной частоты LC-цепочки будут проходить в нагрузку беспрепятственно, и только близкие к резонансу по частоте токи - будут находить себе кротчайший путь через LC-цепочку.

Или наоборот. Если необходимо пропустить только ток определенной частоты, то LC-цепочку включают последовательно приемнику, тогда составляющие сигнала на резонансной частоте цепочки пройдут к нагрузке почти без потерь, а частоты далекие от резонанса окажутся сильно ослаблены и можно сказать, что к нагрузке совсем не попадут. Данный принцип применим к радиоприемникам, где перестраиваемый колебательный контур настраивают на прием строго определенной частоты нужной радиостанции.

Вообще резонанс напряжений в электротехнике является нежелательным явлением, поскольку он вызывает перенапряжения и выход из строя оборудования.

В качестве простого примера можно привести длинную кабельную линию, которая по какой-то причине оказалась не подключенной к нагрузке, но при этом питается от промежуточного трансформатора. Такая линия с распределенной емкостью и индуктивностью, если ее резонансная частота совпадет с частотой питающей сети, просто будет пробита и выйдет из строя. Чтобы предотвратить разрушение кабелей от случайного резонанса напряжений, применяют вспомогательную нагрузку.

Но иногда резонанс напряжений играет нам на руку и не только в радиоприемниках. Например, бывает, что в сельской местности напряжение в сети непредсказуемо упало, а станку нужно напряжение не менее 220 вольт. В этом случае явление резонанса напряжений спасает.

Достаточно последовательно со станком (если приводом в нем является асинхронный двигатель) включить по несколько конденсаторов на фазу, и таким образом напряжение на обмотках статора поднимется.

Здесь важно правильно подобрать количество конденсаторов, чтобы они точно скомпенсировали своим емкостным сопротивлением вместе с индуктивным сопротивлением обмоток просадку напряжения в сети, то есть слегка приблизив цепь к резонансу - можно поднять упавшее напряжение даже под нагрузкой.


Когда источник ЭДС, емкость, индуктивность и сопротивление включены между собой параллельно, то резонанс в такой цепи называется параллельным резонансом или резонансом токов. Характерная черта резонанса токов - значительные токи через емкость и индуктивность, по сравнению с током источника.

Причина появления такой картины очевидна. Ток через активное сопротивление по закону Ома будет равен U/R, через емкость U/XC, через индуктивность U/XL, и составив отношение IL к I можно найти величину добротности Q. Ток через индуктивность будет в Q раз больше тока источника, такой же ток будет течь каждые пол периода в конденсатор и из него.

То есть резонанс токов приводит к возрастанию тока через реактивные элементы в Q раз, а резонансная ЭДС будет ограничена ЭДС источника, его внутренним сопротивлением и активным сопротивлением цепи R. Таким образом, на резонансной частоте сопротивление параллельного колебательного контура максимально.

Аналогично резонансу напряжений, резонанс токов применяется в различных фильтрах. Но включенный в цепь, параллельный контур действует наоборот, чем в случае с последовательным: установленный параллельно нагрузке, параллельный колебательный контур позволит току резонансной частоты контура пройти в нагрузку, поскольку сопротивление самого контура на собственной резонансной частоте максимально.

Установленный последовательно с нагрузкой, параллельный колебательный контур не пропустит сигнал резонансной частоты, поскольку все напряжение упадет на контуре, а на нагрузку придется мизерная доля сигнала резонансной частоты.

Так, основное применение резонанса токов в радиотехнике - создание большого сопротивления для тока определенной частоты в ламповых генераторах и усилителях высокой частоты.

В электротехнике резонанс токов используется с целью достижения высокого коэффициента мощности нагрузок, обладающих значительными индуктивными и емкостными составляющими.

Например, представляют собой конденсаторы, подключаемые параллельно обмоткам асинхронных двигателей и трансформаторов, работающих под нагрузкой ниже номинальной.

К таким решениям прибегают как раз с целью достижения резонанса токов (параллельного резонанса), когда индуктивное сопротивление оборудования делается равным емкостному сопротивлению подключаемых конденсаторов на частоте сети, чтобы реактивная энергия циркулировала между конденсаторами и оборудованием, а не между оборудованием и сетью; чтобы сеть отдавала энергию только тогда, когда оборудование нагружено и потребляет активную мощность.

Когда же оборудование работает в холостую, сеть оказывается подключена параллельно резонансному контуру (внешние конденсаторы и индуктивность оборудования), который представляет для сети очень большое комплексное сопротивление и позволяет снизиться .

>> Резонанс в электрической цепи

§ 35 РЕЗОНАНС В ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

При изучении вынужденных механических колебаний мы ознакомились с явлением резонанса . Резонанс наблюдается в том случае, когда собственная частота колебаний системы совпадает с частотой изменения внешней силы. Если трение мало, то амплитуда установившихся вынужденных колебаний при резонансе резко увеличивается. Совпадение вида уравнений для описания механических и электромагнитных колебаний (позволяет сделать заключение о возможности резонанса также и в электрической цепи, если эта цепь представляет собой колебательный контур, обладающий определенной собственной частотой колебаний.

При механических колебаниях резонанс выражен отчетливо при малых значениях коэфициента трения . В электрической цепи роль коэффициента трения выполняет ее активное сопротивление R. Ведь именно наличие этого сопротивления в цепи приводит к превращению энергии тока но внутреннюю энергию проводника (проводник нагревается). Поэтому резонанс в электрическом колебательном кон-lype должен быть выражен отчетливо при малом активном сопротивлении R.

Мы с вами уже знаем, что если активное сопротивление мало, то собственная циклическая частота колебаний в контуре определяется формулой

При вынужденных электромагнитных колебаниях возможен резонанс - резкое возрастание амплитуды колебаний силы тока и напряжения при совпадении частоты внешнего переменного напряжения с собственной частотой колебаний. На явлении резонанса основана вся радиосвязь.

1. Может ли амплитуда силы тока при резонансе превысить силу постоянного тока в цепи с таким же активным сопротивлением и постоянным напряжением, равным амплитуде переменного напряжения!
2. Чему равна разность фаз между колебаниями силы тока и напряжения при резонансе!
3. При каком условии резонансные свойства контура выражены наиболее отчетливо!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Книги и учебники согласно календарному плануванння по физике 11 класса скачать , помощь школьнику онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки