Способы защиты информации. Техническая защита информации Средства инженерно технической защиты информации

В требованиях по безопасности информации при проектировании информационных систем указываются признаки, характеризующие применяемые средства защиты информации. Они определены различными актами регуляторов в области обеспечения информационной безопасности, в частности - ФСТЭК и ФСБ России. Какие классы защищенности бывают, типы и виды средств защиты, а также где об этом узнать подробнее, отражено в статье.

Введение

Сегодня вопросы обеспечения информационной безопасности являются предметом пристального внимания, поскольку внедряемые повсеместно технологии без обеспечения информационной безопасности становятся источником новых серьезных проблем.

О серьезности ситуации сообщает ФСБ России: сумма ущерба, нанесенная злоумышленниками за несколько лет по всему миру составила от $300 млрд до $1 трлн. По сведениям, представленным Генеральным прокурором РФ, только за первое полугодие 2017 г. в России количество преступлений в сфере высоких технологий увеличилось в шесть раз, общая сумма ущерба превысила $ 18 млн. Рост целевых атак в промышленном секторе в 2017 г. отмечен по всему миру. В частности, в России прирост числа атак по отношению к 2016 г. составил 22 %.

Информационные технологии стали применяться в качестве оружия в военно-политических, террористических целях, для вмешательства во внутренние дела суверенных государств, а также для совершения иных преступлений. Российская Федерация выступает за создание системы международной информационной безопасности.

На территории Российской Федерации обладатели информации и операторы информационных систем обязаны блокировать попытки несанкционированного доступа к информации, а также осуществлять мониторинг состояния защищенности ИТ-инфраструктуры на постоянной основе. При этом защита информации обеспечивается за счет принятия различных мер, включая технические.

Средства защиты информации, или СЗИ обеспечивают защиту информации в информационных системах, по сути представляющих собой совокупность хранимой в базах данных информации, информационных технологий, обеспечивающих ее обработку, и технических средств.

Для современных информационных систем характерно использование различных аппаратно-программных платформ, территориальная распределенность компонентов, а также взаимодействие с открытыми сетями передачи данных.

Как защитить информацию в таких условиях? Соответствующие требования предъявляют уполномоченные органы, в частности, ФСТЭК и ФСБ России. В рамках статьи постараемся отразить основные подходы к классификации СЗИ с учетом требований указанных регуляторов. Иные способы описания классификации СЗИ, отраженные в нормативных документах российских ведомств, а также зарубежных организаций и агентств, выходят за рамки настоящей статьи и далее не рассматриваются.

Статья может быть полезна начинающим специалистам в области информационной безопасности в качестве источника структурированной информации о способах классификации СЗИ на основании требований ФСТЭК России (в большей степени) и, кратко, ФСБ России.

Структурой, определяющей порядок и координирующей действия обеспечения некриптографическими методами ИБ, является ФСТЭК России (ранее - Государственная техническая комиссия при Президенте Российской Федерации, Гостехкомиссия).

Если читателю приходилось видеть Государственный реестр сертифицированных средств защиты информации , который формирует ФСТЭК России, то он безусловно обращал внимание на наличие в описательной части предназначения СЗИ таких фраз, как «класс РД СВТ», «уровень отсутствия НДВ» и пр. (рисунок 1).

Рисунок 1. Фрагмент реестра сертифицированных СЗИ

Классификация криптографических средств защиты информации

ФСБ России определены классы криптографических СЗИ: КС1, КС2, КС3, КВ и КА.

К основным особенностям СЗИ класса КС1 относится их возможность противостоять атакам, проводимым из-за пределов контролируемой зоны. При этом подразумевается, что создание способов атак, их подготовка и проведение осуществляется без участия специалистов в области разработки и анализа криптографических СЗИ. Предполагается, что информация о системе, в которой применяются указанные СЗИ, может быть получена из открытых источников.

Если криптографическое СЗИ может противостоять атакам, блокируемым средствами класса КС1, а также проводимым в пределах контролируемой зоны, то такое СЗИ соответствует классу КС2. При этом допускается, например, что при подготовке атаки могла стать доступной информация о физических мерах защиты информационных систем, обеспечении контролируемой зоны и пр.

В случае возможности противостоять атакам при наличии физического доступа к средствам вычислительной техники с установленными криптографическими СЗИ говорят о соответствии таких средств классу КС3.

Если криптографическое СЗИ противостоит атакам, при создании которых участвовали специалисты в области разработки и анализа указанных средств, в том числе научно-исследовательские центры, была возможность проведения лабораторных исследований средств защиты, то речь идет о соответствии классу КВ.

Если к разработке способов атак привлекались специалисты в области использования НДВ системного программного обеспечения, была доступна соответствующая конструкторская документация и был доступ к любым аппаратным компонентам криптографических СЗИ, то защиту от таких атак могут обеспечивать средства класса КА.

Классификация средств защиты электронной подписи

Средства электронной подписи в зависимости от способностей противостоять атакам принято сопоставлять со следующими классами: КС1, КС2, КС3, КВ1, КВ2 и КА1. Эта классификация аналогична рассмотренной выше в отношении криптографических СЗИ.

Выводы

В статье были рассмотрены некоторые способы классификации СЗИ в России, основу которых составляет нормативная база регуляторов в области защиты информации. Рассмотренные варианты классификации не являются исчерпывающими. Тем не менее надеемся, что представленная сводная информация позволит быстрее ориентироваться начинающему специалисту в области обеспечения ИБ.

В любой организации или значимом объекте. Данные средства применяются для поиска техники кражи информации, которая иногда оказывается установленной на объекте, для изоляции помещений во время ведения переговоров или каких-то важных совещаний, чтобы защитить коммуникации и технику, используемую для

Технические средства защиты информации: телефонные линии

Телефонные линии связи принято считать самыми вероятными способами утечки информации. Большая часть устройств для активного предохранения телефонных линий предназначена нейтрализовать прослушивающую и звукозаписывающую технику, которая подключена между станцией и абонентским аппаратом. Защита реализована посредством генерации в телефонную линию высокочастотных и низкочастотных помех, регулирования электрического тока потребления в линии во время разговора, что становится причиной снижения качества сигнала на входе подслушивающей техники, а также блокирует акустический пуск звукозаписывающей аппаратуры. Если используются радиопередающие устройства, то также происходит сдвиг частоты канала или размытие спектра передачи.

Технические средства защиты информации: электронные системы

Современный бизнес не способен существовать без использования больших объемов информации, предполагающей применение электронных обрабатывающих систем, которые создают побочное электромагнитное излучение. При помощи специализированных технических средств их вполне возможно перехватить за пределами контролируемой зоны, а потом полностью восстановить информацию. Помимо таких излучений поблизости действующих электронных устройств всегда имеется квазистатическое информационное электрическое и магнитное поля, которые стремительно уменьшаются с расстоянием, однако, требуют наводки на цепи, которые расположены достаточно близко. Такие поля существенны на частотах от десятков кило- до десятков мегагерц. В этом случае перехват информации становится возможным при непосредственном подключении к этим коммуникациям приемной аппаратуры за пределами охраняемой зоны. Чтобы исключить утечку информации по таким каналам, применяются которые заняты производством активной маскировки побочного электромагнитного излучения.

Как видите, на данный момент существуют достаточно эффективные способы и средства защиты информации, которые могут быть использованы в условиях современных компаний.

Средства защиты информации - это совокупность инженерно-технических, электрических, электронных, оптических и других устройств и приспособлений, приборов и технических систем, а также иных вещных элементов, используемых для решения различных задач по защите информации, в том числе предупреждения утечки и обеспечения безопасности защищаемой информации.

В целом средства обеспечения защиты информации в части предотвращения преднамеренных действий в зависимости от способа реализации можно разделить на группы:

Технические (аппаратные) средства. Это различные по типу устройства (механические, электромеханические, электронные и др.), которые аппаратными средствами решают задачи защиты информации. Они препятствуют доступу к информации, в том числе с помощью её маскировки. К аппаратным средствам относятся: генераторы шума, сетевые фильтры, сканирующие радиоприемники и множество других устройств, «перекрывающих» потенциальные каналы утечки информации или позволяющих их обнаружить. Преимущества технических средств связаны с их надежностью, независимостью от субъективных факторов, высокой устойчивостью к модификации. Слабые стороны - недостаточная гибкость, относительно большие объём и масса, высокая стоимость;

Программные средства включают программы для идентификации пользователей, контроля доступа, шифрования информации, удаления остаточной (рабочей) информации типа временных файлов, тестового контроля системы защиты и др. Преимущества программных средств - универсальность, гибкость, надежность, простота установки, способность к модификации и развитию. Недостатки - ограниченная функциональность сети, использование части ресурсов файл-сервера и рабочих станций, высокая чувствительность к случайным или преднамеренным изменениям, возможная зависимость от типов компьютеров (их аппаратных средств);

Смешанные аппаратно-программные средства реализуют те же функции, что аппаратные и программные средства в отдельности, и имеют промежуточные свойства;

Организационные средства складываются из организационно-технических (подготовка помещений с компьютерами, прокладка кабельной системы с учетом требований ограничения доступа к ней и др.) и организационно-правовых (национальные законодательства и правила работы, устанавливаемые руководством конкретного предприятия). Преимущества организационных средств состоят в том, что они позволяют решать множество разнородных проблем, просты в реализации, быстро реагируют на нежелательные действия в сети, имеют неограниченные возможности модификации и развития. Недостатки - высокая зависимость от субъективных факторов, в том числе от общей организации работы в конкретном подразделении.

По степени распространения и доступности выделяются программные средства, другие средства применяются в тех случаях, когда требуется обеспечить дополнительный уровень защиты информации.

Классификация средств защиты информации.

1. Средства защиты от несанкционированного доступа (НСД):

1.2. Мандатное управление доступом;

1.3. Избирательное управление доступом;

1.4. Управление доступом на основе паролей;

1.5. Журналирование.

2. Системы анализа и моделирования информационных потоков (CASE-системы).

3. Системы мониторинга сетей:

3.1.Системы обнаружения и предотвращения вторжений (IDS/IPS);

3.2. Системы предотвращения утечек конфиденциальной информации (DLP-системы).

4. Анализаторы протоколов.

5. Антивирусные средства.

6. Межсетевые экраны.

7. Криптографические средства:

7.1. Шифрование;

7.2. Цифровая подпись.

8. Системы резервного копирования.

9. Системы бесперебойного питания:

10.Системы аутентификации:

10.1. Пароль;

10.2. Ключ доступа;

10.3. Сертификат.

10.4. Биометрия.

11. Средства предотвращения взлома корпусов и краж оборудования.

12. Средства контроля доступа в помещения.

13. Инструментальные средства анализа систем защиты: Мониторинговый программный продукт.

16) Типовая корпоративная сеть с точки зрения безопасности .

В настоящее время корпоративные компьютерные сети играют важную роль в деятельности многих организаций. Электронная коммерция из абстрактного понятия все более превращается в реальность. Большинство корпоративных сетей подключены к глобальной сети Internet . Если раньше Internet объединяла небольшое число людей, доверявших друг другу, то сейчас количество её пользователей неуклонно растет и уже составляет сотни миллионов. В связи с этим всё серьёзнее становится угроза внешнего вмешательства в процессы нормального функционирования корпоративных сетей и несанкционированного доступа с их ресурсам со стороны злоумышленников - так называемых "хакеров".

В основе функционирования всемирной сети Internet лежат стандарты IP -сетей. Каждое устройство в такой сети, однозначно идентифицируется своим уникальным IP -адресом. Однако при взаимодействии в IP -сети нельзя быть абсолютно уверенным в подлинности узла (абонента с которым осуществляется обмен информацией), имеющего определённый IP -адрес, т.к. средства программирования позволяют манипулировать адресами отправителя и получателя сетевых пакетов, и уже этот факт является частью проблемы обеспечения безопасности современных сетевых информационных технологий.

Вопросы обеспечения безопасности корпоративных сетей удобно рассматривать, выделив несколько уровней информационной инфраструктуры, а именно:

Уровень персонала

Уровень приложений

Уровень СУБД

Уровень ОС

Уровень сети

К уровню сети относятся используемые сетевые протоколы (ТСР/ I Р, NetBEUI , IPX / SPX), каждый из которых имеет свои особенности, уязвимости и связанные с ними возможные атаки.

К уровню операционных систем (ОС) относятся установленные на узлах корпоративной сети операционные системы (Windows , UNIX и т. д.).

Следует также выделить уровень систем управления базами данных (СУБД), т.к. это, как правило, неотъемлемая часть любой корпоративной сети.

На четвертом уровне находятся всевозможные приложения, используемые в корпоративной сети. Это может быть программное обеспечение Web -серверов, различные офисные приложения, броузеры и т.п.

И, наконец, на верхнем уровне информационной инфраструктуры находятся пользователи и обслуживающий персонал автоматизированной системы, которому присущи свои уязвимости с точки зрения безопасности.

Примерный сценарий действий нарушителя

Можно с уверенностью сказать, что нет какой-либо отлаженной технологии проникновения во внутреннюю корпоративную сеть. Многое определяется конкретным стечением обстоятельств, интуицией атакующего и другими факторами. Однако можно выделить несколько общих этапов проведения атаки на корпоративную сеть:

Сбор сведений

Попытка получения доступа к наименее защищённому узлу (возможно, с минимальными привилегиями)

Попытка повышения уровня привилегий или (и) использование узла в качестве платформы для исследования других узлов сети

Инженерно-техническая защита (ИТЗ) - это совокупность специальных органов, технических средств и мероприятий по их использованию в целях защиты конфиденциальной информации. По функциональному назначению средства инженерно-технической защиты делятся на следующие группы:

1) Физические средства , включающие различные средства и сооружения, препятствующие физическому проникновению (или доступу) злоумышленников на объекты защиты и к материальным носителям конфиденциальной информации и осуществляющие защиту персонала, материальных средств, финансов и информации от противоправных воздействий; К физическим средствам относятся механические, электромеханические, электронные, электронно-оптические, радио- и радиотехнические и другие устройства для воспрещения несанкционированного доступа (входа-выхода), проноса (выноса) средств и материалов и других возможных видов преступных действий.

Эти средства () применяются для решения следующих задач:

1. охрана территории предприятия и наблюдение за ней; 2. охрана зданий, внутренних помещений и контроль за ними; 3. охрана оборудования, продукции, финансов и информации; 4. осуществление контролируемого доступа в здания и помещения

Все физические средства защиты объектов можно разделить на три категории: средства предупреждения, средства обнаружения и системы ликвидации угроз. Охранная сигнализация и охранное телевидение, например, относятся к средствам обнаружения угроз; заборы вокруг объектов - это средства предупреждения несанкционированного проникновения на территорию, а усиленные двери, стены, потолки, решетки на окнах и другие меры служат защитой и от проникновения и от других преступных действий. Средства пожаротушения относятся к системам ликвидации угроз.

В общем плане по физической природе и функциональному назначению все средства этой категории можно разделить на следующие группы:

    охранные и охранно-пожарные системы;

    охранное телевидение;

    охранное освещение;

    средства физической защиты.

    аппаратные средства.

Сюда входят приборы, устройства, приспособления и другие технические решения, используемые в интересах защиты информации. Основная задача аппаратных средств - обеспечение стойкой защиты информации от разглашения, утечки и несанкционированного доступа через технические средства обеспечения производственной деятельности;

2) Аппаратные средства защиты информации - это различные технические устройства, системы и сооружения(техническая защита информации ), предназначенные для защиты информации от разглашения, утечки и несанкционированного доступа.

Использование аппаратных средств защиты информации позволяет решать следующие задачи:

    проведение специальных исследований технических средств на наличие возможных каналов утечки информации;

    выявление каналов утечки информации на разных объектах и в помещениях;

    локализация каналов утечки информации;

    поиск и обнаружение средств промышленного шпионажа;

    противодействие НСД (несанкционированному доступу) к источникам конфиденциальной информации и другим действиям.

По назначению аппаратные средства классифицируют на средства обнаружения, средства поиска и детальных измерений, средства активного и пассивного противодействия. При этом по техническим возможностям средства защиты информации могут быть общего назначения, рассчитанные на использование непрофессионалами с целью получения общих оценок, и профессиональные комплексы, позволяющие проводить тщательный поиск, обнаружение и измерения все характеристик средств промышленного шпионажа. Поисковую аппаратуру можно подразделить на аппаратуру поиска средств съема информации и исследования каналов ее утечки. Аппаратура первого типа направлена на поиск и локализацию уже внедренных злоумышленниками средств НСД. Аппаратура второго типа предназначается для выявления каналов утечки информации. Определяющими для такого рода систем являются оперативность исследования и надежность полученных результатов. Профессиональная поисковая аппаратура, как правило, очень дорога, и требует высокой квалификации работающего с ней специалиста. В связи с этим, позволить ее могут себе организации, постоянно проводящие соответствующие обследования.

3) Программные средства . Программная защита информации - это система специальных программ, реализующих функции защиты информации. Выделяют следующие направления использования программ для обеспечения безопасности конфиденциальной информации

    защита информации от несанкционированного доступа;

    защита информации от копирования;

    защита информации от вирусов;

    программная защита каналов связи.

Защита информации от несанкционированного доступа Для защиты от чужого вторжения обязательно предусматриваются определенные меры безопасности. Основные функции, которые должны осуществляться программными средствами, это:

    идентификация субъектов и объектов;

    разграничение доступа к вычислительным ресурсам и информации;

    контроль и регистрация действий с информацией и программами.

Процедура идентификации и подтверждения подлинности предполагает проверку, является ли субъект, осуществляющий доступ, тем, за кого себя выдает. Наиболее распространенным методом идентификации является парольная идентификация. Практика показала, что парольная защита данных является слабым звеном, так как пароль можно подслушать или подсмотреть, пароль можно перехватить, а то и просто разгадать. После выполнения процедур идентификации и установления подлинности пользователь получает доступ к вычислительной системе, и защита информации осуществляется на трех уровнях: аппаратуры, программного обеспечения и данных. Защита от копирования Средства защиты от копирования предотвращают использование нелегальных копий программного обеспечения и являются в настоящее время единственно надежным средством - защищающим авторское право разработчиков. Под средствами защиты от копирования понимаются средства, обеспечивающие выполнение программой своих функций только при опознании некоторого уникального некопируемого элемента. Таким элементом (называемым ключевым) может быть определенная часть компьютера или специальное устройство. Защита информации от разрушения Одной из задач обеспечения безопасности для всех случаев пользования компьютером является защита информации от разрушения. Так как причины разрушения информации весьма разнообразны (несанкционированные действия, ошибки программ и оборудования, компьютерные вирусы и пр.), то проведение защитных мероприятий обязательно для всех, кто пользуется компьютером. Необходимо специально отметить опасность компьютерных вирусов. Вирус компьютерный - небольшая, достаточно сложнаяя и опасная программа, которая может самостоятельно размножаться, прикрепляться к чужим программам и передаваться по информационным сетям. Вирус обычно создается для нарушения работы компьютера различными способами - от «безобидной» выдачи какого-либо сообщения до стирания, разрушения файлов. Антивирус - программа, обнаруживающая и удаляющая вирусы.

4) Криптографические средства - это специальные математические и алгоритмические средства защиты информации, передаваемой по системам и сетям связи, хранимой и обрабатываемой на ЭВМ с использованием разнообразных методов шифрования. Техническая защита информации путем ее преобразования, исключаю­щего ее прочтение посторонними лицами, волновала человека с давних времен. Криптография должна обеспечивать такой уровень секретности, чтобы можно было надежно защитить критическую информацию от расшифровки крупными организациями - такими, как мафия, транснациональные корпорации и крупные государства. Криптография в прошлом использовалась лишь в военных целях. Однако сейчас, со станов­лением информационного общества, она становится инструментом для обеспечения конфиденциальности, доверия, авторизации, электронных платежей, корпоративной безопасности и бесчисленного множества других важных вещей. Почему проблема использования криптографических методов стала в настоящий момент особо актуальна? С одной стороны, расширилось использование компьютерных сетей, в частности глобальной сети Интернет, по которым передаются большие объемы информации государственного, военного, коммерческого и частного характера, не допускающего возможность доступа к ней посторонних лиц. С другой стороны, появление новых мощных компьютеров, технологий сетевых и нейронных вычислений сделало возможным дискредитацию криптографических систем, еще недавно считавшихся практически не раскрываемыми. Проблемой защиты информации путем ее преобразования занимается криптология (kryptos - тайный, logos - наука). Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих направлений прямо противоположны. Криптография занимается поиском и исследованием математических методов преобразования информации. Сфера интересов криптоанализа - исследование возможности расшифровывания информации без знания ключей. Современная криптография включает в себя 4 крупных раздела.

    Симметричные криптосистемы.

    Криптосистемы с открытым ключом.

    Системы электронной подписи.

    Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообще­ний, хранение информации (документов, баз данных) на носителях в за­шифрованном виде. Терминология. Криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возмож­но только при знании ключа. В качестве информации, подлежащей шифрованию и дешифрованию, будут рассматриваться тексты, построенные на некотором алфавите. Под этими терминами понимается следующее. Алфавит - конечное множество используемых для кодирования ин­формации знаков. Текст - упорядоченный набор из элементов алфавита. Шифрование - преобразовательный процесс: исходный текст, кото­рый носит также название открытого текста, заменяется шифрованным текстом. Дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный. Ключ - информация, необходимая для беспрепятственного шифрова­ния и дешифрования текстов. Криптографическая система представляет собой семейство Т [Т1, Т2, ..., Тк] преобразований открытого текста. Члены этого семейства ин­дексируются, или обозначаются символом «к»; параметр к является клю­чом. Пространство ключей К - это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд букв алфавита. Криптосистемы разделяются на симметричные и с открытым ключом. В симметричных криптосистемах и для шифрования, и для дешиф­рования используется один и тот же ключ. В системах с открытым ключом используются два ключа - откры­тый и закрытый, которые математически связаны друг с другом. Инфор­мация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известно­го только получателю сообщения. Термины распределение ключей и управление ключами относятся к процессам системы обработки информации, содержанием которых яв­ляется составление и распределение ключей между пользователями. Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлин­ность сообщения. Криптостойкостью называется характеристика шифра, определяю­щая его стойкость к дешифрованию без знания ключа (т. е. криптоанали­зу). Эффективность шифрования с целью за­щиты информации зависит от сохранения тайны ключа и криптостойко­сти шифра. Наиболее простой критерий такой эффективности - вероятность рас­крытия ключа или мощность множества ключей (М). По сути, это то же самое, что и криптостойкость. Для ее численной оценки можно использо­вать также и сложность раскрытия шифра путем перебора всех ключей. Однако этот критерий не учитывает других важных требований к криптосистемам:

    невозможность раскрытия или осмысленной модификации информа­ции на основе анализа ее структуры;

    совершенство используемых протоколов защиты;

    минимальный объем применяемой ключевой информации;

    минимальная сложность реализации (в количестве машинных опера­ций), ее стоимость;

    высокая оперативность.

Часто более эффективным при выборе и оценке криптографической системы является применение экспертных оценок и имитационное моде­лирование. В любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в ИС ин­формации.

Такое деление средств защиты информации (техническая защита информации ), достаточно условно, так как на практике очень часто они взаимодействуют и реализуются в комплексе в виде программно - аппаратных модулей с широким использованием алгоритмов закрытия информации.

Для предотвращения вышеперечисленных угроз существуют различные способы защиты информации. Помимо естественных способов выявления и своевременного устранения причин, используют следующие специальные способы защиты информации от нарушений работоспособности компьютерных систем:

    внесение структурной, временной информации и функциональной избыточности компьютерных ресурсов;

    защита от некорректного использования ресурсов компьютерной системы;

    выявление и своевременное устранение ошибок на этапе разработки программно-аппаратных средств .

Структурная избыточность компьютерных ресурсов достигается за счет резервирования аппаратных компонентов и машинных носителей. Организация замены отказавших и своевременного пополнения резервных компонентов. Структурная избыточность составляет основу. Внесение информационной избыточности выполняется путем периодического или постоянного фонового резервирования данных. На основных и резервных носителях. Резервирование данных обеспечивает восстановление случайного или преднамеренного уничтожения или искажения информации. Для восстановления работоспособности компьютерной сети после появления устойчивого отказа кроме резервирования обычных данных, следовательно, заблаговременно резервировать и системную информацию. Функциональная избыточность компьютерных ресурсов достигается дублированием функции или внесением дополнительных функций в программно-аппаратные ресурсы. Например, периодическое тестирование и восстановление самотестирование и самовосстановление компонентов систем.

Защита от некорректного использования ресурсов компьютерных систем, заключенных в корректном функционировании программного обеспечения с позиции использования ресурсов вычислительных систем программа может четко и своевременно выполнять свои функции, но не корректно использовать компьютерные ресурсы. Например, изолирование участков оперативной памяти для операционной системы прикладных программ защита системных областей на внешних носителях.

Выявление и устранение ошибок при разработке программно-аппаратных средств достигается путем качественного выполнения базовых стадий разработки на основе системного анализа концепции проектирования и реализации проекта. Однако, основным видом угроз целостности и конфиденциальности информации является преднамеренные угрозы. Их можно разделить на 2 группы:

    угрозы, которые реализуются с постоянным участием человека;

    после разработки злоумышленником соответствующих компьютерных программ выполняется этими программами без участия человека.

Задачи по защите от угроз каждого вида одинаковы:

    запрещение несанкционированного доступа к ресурсам;

    невозможность несанкционированного использования ресурсов при осуществлении доступа;

    своевременное обнаружение факта несанкционированного доступа. Устранение их причин и последствий .

2.2 Аппаратные средства защиты информации

Средства защиты информации - совокупность инженерно-технических, электрических, электронных, оптических и других устройств и приспособлений, приборов и технических систем, а также иных вещных элементов, используемых для решения различных задач по защите информации, в том числе предупреждения утечки и обеспечения безопасности защищаемой информации .

Средства обеспечения защиты информации в части предотвращения преднамеренных действий в зависимости от способа реализации можно разделить на группы:

    аппаратные средства;

    программные средства;

    смешанные аппаратно-программные средства;

    организационные средства;

    шифрование данных;

    конфиденциальность.

Рассмотрим более подробно аппаратные средства защиты информации.

Аппаратные средства – технические средства, используемые для обработки данных.

К аппаратным средствам защиты относятся различные электронные, электронно-механические, электронно-оптические устройства. К настоящему времени разработано значительное число аппаратных средств различного назначения, однако наибольшее распространение получают следующие:

    специальные регистры для хранения реквизитов защиты: паролей, идентифицирующих кодов, грифов или уровней секретности;

    генераторы кодов, предназначенные для автоматического генерирования идентифицирующего кода устройства;

    устройства измерения индивидуальных характеристик человека (голоса, отпечатков) с целью его идентификации;

    специальные биты секретности, значение которых определяет уровень секретности информации, хранимой в ЗУ, которой принадлежат данные биты.

Схемы прерывания передачи информации в линии связи с целью периодической проверки адреса выдачи данных. Особую и получающую наибольшее распространение группу аппаратных средств защиты составляют устройства для шифрования информации (криптографические методы). В самом простом случае для работы сети достаточно сетевых карт и кабеля. Если же необходимо создать достаточно сложную сеть, то понадобится специальное сетевое оборудование.

Под аппаратным обеспечением средств защиты операционной системы традиционно понимается совокупность средств и методов, используемых для решения следующих задач:

    управление оперативной и виртуальной памятью компьютера;

    распределение процессорного времени между задачами в многозадачной операционной системе;

    синхронизация выполнения параллельных задач в многозадачной операционной системе;

    обеспечение совместного доступа задач к ресурсам операционной системы.

Перечисленные задачи в значительной степени решаются с помощью аппаратно реализованных функций процессоров и других узлов компьютера. Однако, как правило, для решения этих задач принимаются и программные средства, и поэтому термины “аппаратное обеспечение защиты ” и “аппаратная защита” не вполне корректны. Тем не менее, поскольку эти термины фактически общеприняты, мы будем их использовать .

Аппаратные устройства криптографической защиты – это, по сути, та же PGP, только реализованная на уровне «железа». Обычно такие устройства представляют собой платы, модули и даже отдельные системы, выполняющие различные алгоритмы шифрования «на лету». Ключи в данном случае тоже «железные»: чаще всего это смарт-карты или идентификаторы TouchMemory (iButton). Ключи загружаются в устройства напрямую, минуя память и системную шину компьютера (ридервмонтирован в само устройство), что исключает возможность их перехвата. Используются эти самодостаточные шифраторы как для кодирования данных внутри закрытых систем, так и для передачи информации по открытым каналам связи. По такому принципу работает, в частности, система защиты КРИПТОН-ЗАМОК, выпускаемая зеленоградской фирмой АНКАД. Эта плата, устанавливаемая в слот PCI, позволяет на низком уровне распределять ресурсы компьютера в зависимости от значения ключа, вводимого еще до загрузки BIOS материнской платой. Именно тем, какой ключ введен, определяется вся конфигурация системы – какие диски или разделы диска будут доступны, какая загрузится ОС, какие в нашем распоряжении будут каналы связи и так далее. Еще один пример криптографического «железа» - система ГРИМ-ДИСК, защищающая информацию, хранимую на жестком диске с IDE-интерфейсом. Плата шифратора вместе с приводом помещена в съемный контейнер (на отдельной плате, устанавливаемой в слот PCI, собраны лишь интерфейсные цепи). Это позволяет снизить вероятность перехвата информации через эфир или каким-либо иным образом. Кроме того, при необходимости защищенное устройство может легко выниматься из машины и убираться в сейф. Ридер ключей типа iButton вмонтирован в контейнер с устройством. После включения компьютера доступ к диску или какому-либо разделу диска можно получить, лишь загрузив ключ в устройство шифрования .

Защита информации от утечки по каналам электромагнитных излучений. Даже грамотная настройка и применение дополнительных программных и аппаратных средств, включая средства идентификации и упомянутые выше системы шифрования, не способны полностью защитить нас от несанкционированного распространения важной информации. Есть канал утечки данных, о котором многие даже не догадываются. Работа любых электронных устройств сопровождается электромагнитными излучениями. И средства вычислительной техники не являются исключением: даже на весьма значительном удалении от электроники хорошо подготовленному специалисту с помощью современных технических средств не составит большого труда перехватить создаваемые вашей аппаратурой наводки и выделить из них полезный сигнал. Источником электромагнитных излучений (ЭМИ), как правило, являются сами компьютеры, активные элементы локальных сетей и кабели. Из этого следует, что грамотно выполненное заземление вполне можно считать разновидностью «железной» системы защиты информации. Следующий шаг - экранирование помещений, установка активного сетевого оборудования в экранированные шкафы и использование специальных, полностью радиогерметизированных компьютеров (с корпусами из специальных материалов, поглощающих электромагнитные излучения, и дополнительными защитными экранами). Кроме того, в подобных комплексах обязательно применение сетевых фильтров и использование кабелей с двойным экранированием. Разумеется, о радиокомплектах клавиатура-мышь, беспроводных сетевых адаптерах и прочих радиоинтерфейсах в данном случае придется забыть. Если же обрабатываемые данные сверхсекретны, в дополнение к полной радиогерметизации применяют еще и генераторы шума. Эти электронные устройства маскируют побочные излучения компьютеров и периферийного оборудования, создавая радиопомехи в широком диапазоне частот. Существуют генераторы, способные не только излучать такой шум в эфир, но и добавлять его в сеть электропитания, чтобы исключить утечку информации через обычные сетевые розетки, иногда используемые в качестве канала связи .

Выйдя в интернет и организовав доступ к своим серверам, учреждение фактически открывает всему миру некоторые ресурсы своей собственной сети, тем самым делая ее доступной для несанкционированного проникновения. Для защиты от этой угрозы между внутренней сетью организации и интернетом обычно устанавливают специальные комплексы - программно-аппаратные брандмауэры (межсетевые экраны). В простейшем случае брандмауэром может служить фильтрующий маршрутизатор. Однако для создания высоконадежных сетей этой меры бывает недостаточно, и тогда приходится использовать метод физического разделения сетей на открытую (для доступа в интернет) и закрытую (корпоративную). У этого решения есть два серьезных недостатка. Во-первых, сотрудникам, которым по долгу службы необходим доступ в обе сети, приходится ставить на рабочее место второй ПК. В результате рабочий стол превращается в пульт оператора центра управления полетом или авиадиспетчера. Во-вторых, и это главное, приходится строить две сети, а это немалые дополнительные финансовые затраты и сложности с обеспечением защиты от ЭМИ (ведь кабели обеих сетей приходится проводить по общим коммуникациям). Если со второй проблемой приходится мириться, то устранить первый недостаток довольно просто: поскольку человек не в состоянии работать за двумя отдельными компьютерами одновременно, необходимо организовать специальное автоматизированное рабочее место (АРМ), предполагающее сеансовый характер работы в обеих сетях. Такое рабочее место - обычный компьютер, снабженный устройством управления доступом (УУД), в котором имеется переключатель сетей, выведенный на лицевую панель системного блока. Именно к устройству доступа и подключены жесткие диски компьютера. Каждый сеанс работы осуществляется под управлением своей операционной системы, загружаемой с отдельного жесткого диска. Доступ к накопителям, не участвующим в текущем сеансе работы, при переключении между сетями полностью блокируется .

Нет более надежной защиты данных, чем их полное уничтожение. Но уничтожить цифровую информацию не так-то просто. Кроме того, бывают случаи, когда от нее нужно избавиться мгновенно. Первую проблему можно решить, если основательно разрушить носитель. Именно для этого придуманы различные утилизаторы. Одни из них работают в точности как офисные шредеры (уничтожители бумаг), механически измельчая дискеты, магнитные и электронные карты, CD- и DVD-диски. Другие представляют собой специальные печи, в которых под воздействием высоких температур или ионизирующего излучения разрушаются любые носители, включая жесткие диски. Так, электродуговые и электроиндукционные установки могут разогреть носитель до температуры 1000-1200 К (примерно 730-930°C), а в комбинации с химическим воздействием, например с использованием самораспространяющегося высокотемпературного синтеза (СВС), обеспечивается быстрый разогрев вплоть до 3000 К. После воздействия на носитель таких температур восстановить имевшуюся на нем информацию невозможно. Для автоматического уничтожения данных используются специальные модули, которые могут встраиваться в системный блок или исполняться как внешнее устройство с установленными в нем накопителями информации. Команда на полное уничтожение данных для таких аппаратов подается обычно дистанционно со специального брелока или с любых датчиков, которые вполне могут отслеживать как вторжение в помещение, так и несанкционированный доступ к устройству, его перемещение или попытку отключения питания. Информация в таких случаях уничтожается одним из двух способов:

    физическое разрушение накопителя (обычно химическими средствами)

    стирание информации в служебных областях дисков.

Восстановить работоспособность накопителей после уничтожения служебных областей можно с помощью специальной аппаратуры, но данные будут потеряны безвозвратно. Подобные устройства исполняются в различных вариантах - для серверов, настольных систем и ноутбуков. Существуют также специальные модификации, разработанные для Министерства обороны: это полностью автономные комплексы с повышенной защитой и абсолютной гарантией срабатывания. Самый большой недостаток подобных систем – невозможность абсолютной страховки от случайного срабатывания. Можно себе представить, каким будет эффект, если, например, гражданин, осуществляющий техническое обслуживание, вскроет системный блок или отключит кабель монитора, забыв при этом заблокировать устройство защиты.