Термопреобразователи сопротивления. характеристики, расшифровка условного обозначения термопреобразователей сопротивления тсм, тсп, тспу, тсму, метран

Трансформаторы с естественным воздушным охлаждением серии ТСП, ТСЗП и ТСЗПС используются в цепях питания преобразователей секций тяговых подстанций метрополитена, собранных по трехфазной мостовой схеме.
Трансформаторы типов ТСП, ТСЗП и ТСЗПС изготавливаются взамен ранее выпускаемых трансформаторов сухих типов ТСВ и ТСЗВ, и являются их аналогами, различия лишь в условном обозначении трехфазных трансформаторов. Изменение условного обозначения силовых трансформаторов вызвано приведением нормативной документации, в том числе и условного обозначения, в соответствии с требованием ГОСТ.
Изоляция сетевых обмоток трансформаторов ТСП, ТСЗП и ТСЗПС термореактивная типа "Транстерм". Активная часть ТСП, ТСЗП и ТСЗПС защищена кожухом с дверями и устанавливается на опорных тележках с гладкими переставными катками. Двери комплектуются электроблокировкой. Трансформаторы укомплектованы устройством контроля температур. Вентильные обмотки защищены пробивными предохранителями. Трансформатор обеспечивает кабельное подсоединение сети.

Расшифровка трансформаторов ТСП, ТСЗП и ТСЗПС

ТСЗПС-Х/10М(МН)У3:
Т - трехфазный;
СЗ - охлаждение естественное воздушное в защищенном
исполнении;
П - для питания полупроводниковых преобразователей;
С - собственных нужд;
Х - потребляемая мощность, кВ·А;
10 - класс напряжения сетевой обмотки ВН, кВ;
М или МН - для подстанций метрополитена с нормальной или
повышенной нагрузочной способностью; У3 - климатическое исполнение и категория размещения.

Технические характеристки ТСП, ТСЗП, ТСЗПС *

Тип Номинальная
мощность, кВА
Номинальные напряжения обмоток, В Масса,
кг
Длина х ширина х высота,
мм
сетевой обмотки,
соединенной в Д
вентильной обмотки,
соединенной в У
ТСП-10/0,7-УХЛ4 (04) 7,3 380; 400; 500; 660 205 85 625 х 305 х 325
ТСП-16/0,7-УХЛ4 (04) 14,6 380; 400; 500; 660 410 120 625 х 305 х 395
205
ТСП-25/0,7-УХЛ4 (04) 29,1 380; 400; 500; 660 410; 205 160 645 х 355 х 515
32,7 380 230
ТСП-63/0,7-УХЛ4 (04) 58,0 380; 400; 500; 660 410 270 745 х 405 х 645
205
ТСП-100/0,7-УХЛ4 (04) 93 380; 400; 660 205 405 865 х 405 х 680
ТСП-125/0,7-УХЛ4 (04) 117 380; 400; 660 410 450 865 х 405 х 730
ТСЗП-10/0,7-УХЛ4 (04) 7,3 380; 400; 500; 660 205 100 665 х 400 х 360
ТСЗП-16/0,7-УХЛ4 (04) 14,6 380; 400; 500; 660 410 135 665 х 400 х 430
205
ТСЗП-25/0,7-УХЛ4 (04) 29,1 380; 400; 500; 660 410 175 685 х 410 х 550
205
ТСЗП-25/0,7-УХЛ4 **) 29,1 380 102,5-60 185 685 х 410 х 550
ТСЗПС-25/0,7-УХЛ4 29,1 380 230 185 685 х 410 х 550
ТСЗП-63/0,7-УХЛ4 (04) 58,0 380; 400; 500; 660 410; 205 290 790 х 450 х 690
65,3 380 230
ТСЗПС-63/0,7-УХЛ4 48 380 230 290 790 х 450 х 690
ТСЗП-100/0,7-УХЛ4 (04) 93
104,37
380; 400; 660
380
205
230
430 910 х 490 х 730
ТСЗПС-100/0,7-УХЛ4 75 380 230 430 910 х 490 х 730
ТСЗП-125/0,7-УХЛ4 (04) 117 380; 400; 660 410 480 910 х 490 х 780

*) Обмотки трансформаторов соединены в схему и группу соединения Д/У-11. Трансформаторы типа ТСЗПС имеют схему и группу соединения Ун/Ун-0.
Для трансформаторов типа ТСП и ТСЗП по согласованию сторон возможны исполнения на напряжения 380/230 В.
Трансформаторы в тропическом исполнении (04) выпускаются с номинальным напряжением сетевой обмотки - 380, 400, 415, 440 В.
Класс нагревостойкости изоляции для умеренного климата «F», для тропического - «Н» по ГОСТ 8865-87.

Если уж совсем-совсем простым языком, это почтовая служба.

У каждого участника IP-совместимой сети есть свой собственный адрес, который выглядит примерно так: 162.123.058.209. Всего таких адресов для протокола IPv4 - 4,22 миллиарда.

Предположим, что один компьютер хочет связаться с другим и отправить ему посылку - "пакет". Он обратится к "почтовой службе" TCP/IP и отдаст ей свою посылку, указав адрес, по которому ее необходимо доставить. В отличие от адресов в реальном мире, одни и те же IP-адреса часто присваиваются разным компьютерам по очереди, а значит, "почтальон" не знает, где физически находится нужный компьютер, поэтому он отправляет посылку в ближайшее "почтовое отделение" - на сетевую плату компьютера. Возможно, там есть информация о том, где находится нужный компьютер, а возможно, такой информации там нет. Если ее нет, на все ближайшие "почтовые отделения" (коммутаторы) расылается запрос адреса. Этот шаг повторяется всеми "почтовыми отделениями", пока они не обнаружат нужный адрес, при этом они запоминают, сколько "почтовых отделений" до них прошел этот запрос и если он пройдет определенное (достаточно болшое) их количество, то его вернут назад с пометкой "адрес не найден". Первое "почтовое отделение" вскоре получит кучу ответов от других "отделений" с вариантами путей до адресата. Если ни одного достаточно короткого пути не найдется (обычно 64 пересылки, но не более 255), посылка вернется отправителю. Если найдется один или несколько путей, посылка будет передана по самому короткому из них, при этом "почтовые отделения" на некоторое время запомнят этот путь, позволяя быстро передавать последующие посылки, не спрашивая ни у кого адрес. После доставки, "почтальон" в обязательном порядке заставит получателя подписать "квитанцию" о том, что он получил посылку и отдаст эту "квитанцию" отправителю, как свидетельство о том, что посылка доставлена в целости - проверка доставки в TCP обязательна. Если отправитель не получит такую квитанцию через определенный промежуток времени или в квитанции будет написано, что посылка повредилась или потерялась при отправке, тогда он попытается снова отправить посылку.

Стёком протоколов, или в просторечье TCP/IP называют сетевую архитектуру современных устройств, разработаных для пользования сетью. Stack - это стенка, в которой каждый составляющий кирпичик лежит поверх другого, зависит от него. Называть стек протоколов "стёком TCP/IP" начали благодаря двум основным протоколам, которые были реализованы - непосредственно IP, и TCP на его основе. Однако, они лишь основные и наиболее распостраненные. Если не сотни, то десятки других используются по сей день в разных целях.

Привычный нам веб (world wide web) основан на протоколе HTTP (hyper-text transfer protocol), который в своб очередь работает на основе TCP. Это классический пример использования стека протоколов. Есть еще протоколы электронной почты IMAP/POP и SMTP, протоколы удаленной оболочки SSH, удаленного рабочего стола RDP, баз данных MySQL, SSL/TLS, и тысячи других приложений со своими протоколами (..)

Чем же отличаются все эти протоколы? Все довольно просто. Помимо различных задач, поставленных при разработке (например, скорость, безопасность, устойчивость и прочие критерии), протоколы созданы с целью разграничения. Например, существуют протоколы прикладного уровня, разные у разных приложений: IRC, Skype, ICQ, Telegram и Jabber - несовместимы друг с другом. Они разработаны для выполнения конкретной задачи, и в данном случае возможность звонить по WhatsApp в ICQ просто не определена технически, так как приложения используют различный протокол. Но их протоколы основываются на одном и том же протоколе IP.

Протоколом можно называть запланированную, штатную последовательность действий в процессе, в котором существует несколько субъектов, в сети они называются пирами (напарниками), реже - клиент и сервер, подчеркивая особенности конкретного протокола. Простейший пример протокола для непонимающего до сих пор - рукопожатие при встрече. Оба знают как и когда, но вопрос зачем - это уже вопрос разработчиков, а не пользователей протокола. Кстати, рукопожатие (handshake) есть почти по всех протоколах, например, для обеспечения разграничения протоколов и защиты от "полетов не на том самолете".

Вот что такое TCP/IP на примере самых популярных протоколов. Здесь показана иерархия зависимости. Надо сказать что приложения лишь пользуются указанными протоколами, которые могут быть а могут и не быть реализованы внутри ОС.

TCP/IP - это набор протоколов.

Протокол - это правило. Например, когда с вами здороваются - вы здороваетесь в ответ (а не прощаетесь или нежелает счастья). Программисты скажут что мы используем протокол приветствия, например.

Что за TCP/IP (сейчас будет совсем просто, пусть коллег не бомбит):

Информация до вашего компа идет по проводам (радио или что еще - не суть важно). Если по проводам пустили ток - значит 1. Выключили - значит 0. Получается 10101010110000 и так далее. 8 ноликов и единиц (битов) это байт. Например 00001111. Это можно представить как число в двоичном виде. В десятичном виде байт - это число от 0 до 255. Эти числа сопоставляет с буквами. Например 0 это А, 1 это Б. (Это называется кодировка).

Ну так вот. Чтобы два компьютера могли эффективно передавать информацию по проводам - они должны подавать ток по каким то правилам - протоколам. Например, они должны условиться как часто можно менять ток, чтобы можно было отличить 0 от второго 0.

Это первый протокол.

Компьютерам как то понимать, что один из них перестал отдавать информацию (типа "я все сказал"). Для этого в начале последовательности данных 010100101 компьютеры могут слать несколько бит, длинну сообщения, которое они хотят передать. Например, первые 8 бит могут означать длину сообщения. То есть сначала в первых 8 битах передают закодированное число 100 и потом 100 байт. После этого принимающий компьютер будет ожидать следующие 8 бит и следующее сообщение.

Вот у нас еще один протокол, с его помощью можно передавать сообщения (компьютерные).

Компьютеров много, чтобы они могли понять кому надо отправить сообщение используют уникальные адреса компьютеров и протокол, позволяющий понять кому это сообщение адресовано. Например первые 8 бит будут означать адрес получателя, следующие 8 - длину сообщения. И потом сообщение. Мы только что засунули один протокол в другой. IP протокол отвечает за адресацию.

Связь не всегда надежная. Для надежной доставки сообщений (компьютерных) используют TCP. При выполнении протокола TCP компьютеры будут переспрашивает друг друга - правильное ли они сообщение получили. Есть еще UDP - это когда компы не переспрашивают то ли они получили. Зачем надо? Вот вы слушаете интернет радио. Если пару байт придет с ошибками - вы услышите например "пш" и дальше снова музыку. Не смертельно, да и не особо важно - для этого используют UDP. А вот если пару байт испортятся при загрузку сайта - вы получите хрень на мониторе и ничего не поймёте. Для сайтом используют TCP.

TCP/IP еще (UDP/IP) - это протоколы, вложенные друг в друга, на которых работает интернет. В конце концов эти протоколы позволяют передать компьютерное сообщение целым и точно по адресу.

Еще есть http протокол. Первая строчка - адрес сайта, последующие строчки - текст который вы шлете на сайт. Все строчки http - это текст. Который засовывают в TCP сообщение, которое адресуют с помощью IP и так далее.

Ответить

Термометрия относится к наиболее простым и эффективным методам измерений. Она основана на том, что физические свойства материала меняются в зависимости от температуры. В частности, измеряя сопротивление металла, сплава или полупроводникового элемента, можно определить его температуру с высокой степенью точности. Датчики такого типа называются термоэлектрическими или термосопротивлениями. Предлагаем рассмотреть различные виды этих устройств, их принцип работы, конструкции и особенности.

Виды термодатчиков

Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):

Обозначения:

  • А – Выводы измерителя.
  • В – Стеклянная пробка, закрывающая защитную гильзу.
  • С – Защитная гильза, наполненная гелием.
  • D – Электроизоляционная пленка, покрывающая внутреннюю часть гильзы.
  • E – Полупроводниковый чувствительный элемент (далее ЧЭ), в приведенном примере это германий, легированный сурьмой.
  1. Металлические датчики . У таких измерителей в качестве ЧЭ выступает проволочный или пленочный резистор, помещенный в керамический или металлический корпус. Металл, используемый для изготовления чувствительного элемента, должен быть технологичен и устойчив к окислению, а также обладать достаточным температурным коэффициентом. Таким критериям практически идеально отвечает платина. Там, где не столь высокие требования к измерениям, может использоваться никель или медь. В качестве примера можно привести термодатчики: PT1000, PT500, ТСП 100 П, ТСП pt100, ТСП 50П, ТСМ 296, ТСМ 045, ТС 125, Jumbo, ДТС Овен и т.д.

Расшифровка аббревиатур

Чтобы не возникало вопросов, что такое ТСМ, приведем расшифровку этой и других аббревиатур:

  • ТСМ это термометр сопротивления (ТС), в чувствительном элементе (ЧЭ) которого используется медная проволока (М).
  • ТСП, в применяется платиновый (проволока из платины) ЧЭ.
  • КТС б – обозначение комплекта из нескольких платиновых ТС., позволяющих провести многозонные измерения, как правило, монтаж таких устройств производится на вход и выход системы отопления, чтобы установить разность температур.
  • ТПТ – технический (Т) платиновый термометр (ПТ).
  • КТПТР – комплект из ТПТ приборов, буква «Р» в конце указывает, что может производиться не только измерение разницы температур между различными датчиками.
  • ТСПН – «Н» в конце ТСП, обозначает, что датчик низкотемпературный.
  • НСХ – под данным сокращением подразумевается «номинальная статическая характеристика», соответствующая стандартной функции «температура-сопротивление». Достаточно посмотреть таблицу НСХ для pt100 или любого другого датчика (например, pt1000, rtd, ntc и т.д.), чтобы иметь представление о его характеристиках.
  • ЭТС – эталонные приборы, служащие для калибровки датчиков.

Чем отличается термосопротивление от термопары?

Схема термопары, ее конструкция, а также принцип работы существенно отличается от термометра сопротивления, расскажем об этом простыми словами. У устройства pt100, а также других датчиков, принцип действия основан на сопоставимости между изменением температуры металла и его сопротивлением.

Принцип термопары построен на различных свойствах двух металлов собранных в единую биметаллическую конструкцию. Устройство, подключение, назначение термопары, а также описание погрешности этих приборов будет рассмотрено в отдельной статье.

Сейчас достаточно понимать, что термопара и ТСП, например pt100, это совершенно разные приборы, отличающиеся принципом работы.

Платиновые измерители температуры

Учитывая распространенность металлических датчиков, имеет смысл привести краткое описание этих устройств, чтобы наглядно показать сравнительные характеристики различных видов, особенности, а также описать сферу применения.

В соответствии с нормами ГОСТ 6651 2009 и МЭК 60751, у рабочих приборов данного типа значение температурного коэффициента должно быть 0,00385°С -1 , эталонных – 0,03925°С -1 . Диапазон измеряемой температуры: от-196,0°С до 600,0°С. К несомненным достоинствам следует отнести высокий коэффициент точности, близкую к линей характеристику «Температура-сопротивление», стабильные параметры. Недостаток – наличие драгметаллов увеличивает стоимость конструкции. Необходимо заметить, что современные технологии позволяют минимизировать содержание этого металла, что делает возможным снижение стоимости продукции.

Основная область применения – контроль температуры различных технологических процессов. Например, такой прибор может быть установлен в трубопроводе, в котором плотность рабочей среды сильно зависит от температуры. В этом случае показания вихревой расходометра корректируются информацией о температуре рабочей среды.


Датчик термопреобразователь ТСП 5071 производства Элемер

Никелевые термометры сопротивления

Температурный коэффициент (далее ТК) у данного типа измерительных устройств самый высокий — 0,00617°С -1 . Диапазон измеряемых температур также существенно уже, чем у платиновых ЧЭ (от -60,0°С до 180,0°С). Основное достоинство данных приборов – высокий уровень выходного сигнала. В процессе эксплуатации следует учитывать особенность, связанную с приближением температуры нагрева к точке Кюри (352,0°С), вызывающую существенное изменение параметров ввиду непредсказуемого гистерезиса.

Данные устройства практически не используются, поскольку в большинстве случаев их можно заменить приборами с медными чувствительными элементами, которые существенно дешевле и технологичнее (проще в производстве).

Медные датчики (ТСМ)

ТК медных измерительных приборов – 0,00428°С -1 , диапазон измеряемых температур немного уже, чем у никелевых аналогов (от -50,0°С до 150°С). К несомненным преимуществам медных измерителей следует отнести их относительно невысокую стоимость и наиболее близкую к линейной характеристику «температура-сопротивление». Но, узкий диапазон измеряемых температур и низкие параметры удельного сопротивления существенно ограничивают сферу применения термопреобразователей ТСМ.


Но, тем не менее, медные датчики рано списывать, есть немало примеров удачных реализаций, например, ТХА Метран 2700, который предназначен как для различных видов промышленности, но также удачно используется в ЖКХ.

Учитывая, что платиновые терморезисторы наиболее востребованы, рассмотрим варианты их конструктивного исполнения.

Типовые конструкции платиновых термосопротивлений

Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.


Обозначения:

  • А – Выводы термоэлектрического элемента.
  • В – Защитный корпус.
  • С – Спираль из платиновой проволоки.
  • D – Мелкодисперсный наполнитель.
  • E – Глазурь, герметизирующая ЧЭ.

Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al 2 O 3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.

На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.

Исполнение Hollow Annulus.

Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий. Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.


Обозначения:

  • А – Выводы с ЧЭ.
  • В – Изоляция выводов ЧЭ.
  • С – Изолирующий мелкодисперсный наполнитель.
  • D – Защитный корпус датчика.
  • E – Проволока из платины.
  • F – Металлическая трубка.

ЧЭ данной конструкции представляет собой металлическую трубку (полый цилиндр), покрытый слоем изоляции, сверху которой наматывается платиновая проволока. В качестве материала цилиндра используется сплав с температурным коэффициентом близким к платине. Изоляционное покрытие (Al 2 O 3) наносится горячим напылением. Собранный ЧЭ помещается с защитный корпус, после чего его герметизируют.

Для данной конструкции характерна низкая инерционность, она может быть в диапазоне от 350,0 миллисекунд до 11,0 секунд, в зависимости от того используется погружаемый или монтированный ЧЭ.

Пленочное исполнение (Thin film).

Основное отличие от предыдущих видов заключается в том, что платина тонким слоем (толщиной в несколько микрон) напыляется на керамическое или пластиковое основание. На напыление наносится стеклянное, эпоксидное или пластиковое защитное покрытие.


Это наиболее распространенный тип конструкции, основные достоинства которой заключаются в невысокой стоимости и небольших габаритах. Помимо этого пленочные датчики обладают низкой инерционностью и относительно высоким внутренним сопротивлением. Последнее практически полностью нивелирует воздействие сопротивления выводов на показания прибора (таблицы термосопротивлений можно найти в сети).

Что касается стабильности, то она уступает проволочным датчикам, но следует учитывать, что пленочная технология усовершенствуется год от года, и прогресс довольно ощутим.

Стеклянная изоляция спирали.

В некоторых дорогих ТС платиновую проволоку покрывают стеклянной изоляцией. Такое исполнение обеспечивает полную герметизацию ЧЭ и увеличивает влагостойкость, но сужает диапазон измеряемой температуры.

Класс допуска

Согласно действующим нормам допускается определенное отклонение от линейной характеристики «температура-сопротивление». Ниже представлена таблица соответствия класса точности.

Таблица 1. Классы допуска.

Приведенная в таблице погрешность отвечает текущим нормам.

Схемы включения ТСМ/ТСП

Существует три варианта подключения:


В измерительных приборах ТС, как правило, включен по мостовой схеме.


Пример подключения по мостовой схеме вторичного прибора (pt100) для измерения температуры воздуха

Обратим внимание, что под r л.с. в электрической схеме подразумевается сопротивление линий связи, то есть проводов, которыми подключен датчик.

Обслуживание

Информация о ТО температурного датчика указана в паспорте прибора или инструкции эксплуатации, там же приводится типовые неисправности и способы их ремонта, рекомендуемая длина кабеля для подключения, а также друга полезная информация.

Термометры сопротивления не требуют специального ТО, в задачу обслуживающего персонала входит:

  • Проверка условий, в которых эксплуатируется датчик.
  • Внешний осмотр на предмет целостности конструкции и кабельных соединений, проверка хода подвижного штуцера (если таковой имеется).
  • Помимо этого проверяется наличие пломб.
  • Проверяется заземление.

Такой осмотр должен проводиться с периодичностью один раз в месяц или чаще.

Помимо этого должна проводиться поверка приборов, с использованием эталонного датчика, например, ЭТС 100.


Для градуировки датчиков используются специальные таблицы, в качестве примера приведена одна из них для термосопротивления pt100. Саму методику калибровки мы приводить не будем, ее описание несложно найти в сети.


Градуировочная таблица для терморезистора pt100 (фрагмент, без указания пределов градуировки измерений)

Что касается методики поверки эталонных платиновых датчиков, то она должна производиться на специальных реперных точках.

Что такое mcc-код

MCC код - Merchant Category Code - четырехзначный код, отражающий принадлежность торгово-сервисного предприятия к конкретному виду деятельности.

Конкретный МСС-код присваивается продавцу обслуживающим платежный терминал банком (банком-эквайером) в момент установки терминала. Если торговая точка занимается несколькими видами деятельности, то mcc-код присваивается как код основного вида деятельности (по ОКВЭД).

Для разных платежных систем (Visa, Mastercard, МИР и др.) конкретные коды для одного вида деятельности могут отличаться, но в целом они соответствуют следующим диапазонам:

  • 0001 - 1499 - сельскохозяйственный сектор;
  • 1500 - 2999 - контрактные услуги;
  • 3000 - 3299 - услуги авиакомпаний;
  • 3300 - 3499 - аренда автомобилей;
  • 3500 - 3999 - аренда жилья;
  • 4000 - 4799 - транспортные услуги;
  • 4800 - 4999 - коммунальные, телекоммуникационные услуги;
  • 5000 - 5599 - торговля;
  • 5600 - 5699 - магазины одежды;
  • 5700 — 7299 - другие магазины;
  • 7300 - 7999 - бизнес услуги;
  • 8000 - 8999 — профессиональные услуги и членские организации;
  • 9000 - 9999 - государственные услуги

Зачем нужен mcc-код

Банки используют МСС-коды для формирования статистики, анализа потребительского поведения клиентов, а также для расчета кэшбэка и бонусов по программам лояльности.

Для чего этот код нужен нам - разумным покупателям? - Для определения принадлежности торговой точки к той или иной категории ТСП и для совершения покупок с максимальной выгодой , с использованием банковской карты с максимальным кэшбэком в соответствующей категории .

Как узнать MCC-код конкретного магазина

Перед совершением крупной покупки, предполагающей большой кэшбэк по одной из Ваших карт, было-бы неплохо заранее убедиться, что эта покупка точно бонусируется (вознаграждается) Банком.

Для этого нужно заранее (ещё до оплаты покупки) узнать MCC-код ТСП . Доступны следующие варианты:

1. Справочник mcc-кодов

Самый простой способ - обратиться к справочнику mcc-кодов (например, mcc-codes.ru ), и, с помощью поиска по названию и городу - найти интересующую точку и ее МСС. Следует отметить, что в справочнике присутствуют, в основном, сетевые и крупные магазины, и, возможно, mcc код непопулярной или местной торговой точки найти не получится.

2. Карта-флагомер и тестовая (небольшая) покупка

Узнать mcc-код можно совершив незначительную по сумме покупку с помощью карты флагомера (карты, у которых в интернет-банке отображаютя mcc-коды по проведенным операциям). К таким картам-флагомерам относят:

  • карты Банка Авангард
  • карту Яндекс-Денег
  • карты АйМаниБанка
  • карты МТС-Банка

3. Незавершенная (не оплаченная) покупка с картой-флагомером

Для того, чтобы узнать mcc код этим способом , нам потребуется любая карта Банка Авангард . Определить mcc-code нужной торговой точки можно следующим образом:

  1. Убедиться в нулевом балансе карты (или в явной нехватке средств на карте на тестовую, "ложную покупку")
  2. Выбрать "интересующий товар" в магазине
  3. Сделать неуспешную попытку оплатить "покупку"
  4. После этого, как в интернет-банке, так и в мобильном приложении будет отражена неуспешная операция оплаты с указанием MCC-кода торгового терминала .

После этого Вы сможете подобрать наиболее выгодную карту для покупки по данному mcc.